Choose one equation (and only one) from the equation sheet that would let you solve the problem posed. Then define which variables in the equation go with what numbers from the problem itself (not from other problems), and define which variable is being solved for. Do not actually solve the problem numerically or algebraically, just pick the one equation and define the relevant knowns and single unknown. Don’t f

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
Choose one equation (and only one) from the equation sheet that would let you solve the problem posed. Then define which variables in the equation go with what numbers from the problem itself (not from other problems), and define which variable is being solved for. Do not actually solve the problem numerically or algebraically, just pick the one equation and define the relevant knowns and single unknown. Don’t forget to include direction when called for by a vector variable 11) During a particular time interval an air conditioner requires 1.2 kJ of mechanical energy in order to remove 2.7 kJ of heat from inside a house, dumping 3.9 kJ of heat outside of the house in the process. How good is it at its job?
x(t) = x0 + Voxt + ½ axt²
y(t) = yo + Voyt + ½ ayt²
Vx (t) = Vox? + 2ax(x-xo)
Vy (t) = Voy + 2a,(y-yo)
v(t) = dx/dt
a(t) = d?x/dt?
Vx(t) = Vox + axt
Vy(t) = Voy + ayt
<V> = (vo + V1) / 2
<a> = (V1 – Vo)/(tj – to)
r = x² + y?
(Vo + V1) / 2 = Ar/At
a(t) = dv/dt
x = rcose
<V> = Ar/At
<a> = Av/At
|A| = (A,? + A,?)2
 = A
y = rsin0
a = ac(-f) + arê®
ac = Vr/r
a. = m²r
VT = (2nr)/T
ac = 4n°r/T?
ar = dvf/dt
VT = or
f = o/2n
f = 1/T
rP/A = rP/B + rB/A
VP/A = VP/B + VB/A
ap/A = ap/B + aB/A
m, m2
EF¡ = ma
F12 = -F21
= G
(-12)
fs,max = lsFN
F = mv²/r
fk = µkFN
Fe = mac
Fdrag
= -by
Fdrag = ½ DpAv² (-8)
2mg
Vt = mg/b
Vt =
dW; = F; · dr
Wi = F; · Ar
Ug = mgy
AUint = fgAs
n = Pout/Pin (X 100%)
V DpA
K = ½ mv?
Usp = ½ k(x-xrel)?
P = dW/dt
AK = ½ m (v1²-vo²)
Fsp = -k (x-Xrel)
P = dU/dt
= dp/dt
ΣW ΔΚ
P = F•v
<ΣF-Δp/Δt
p= mv
miv10 + m2v20 = m¡v11 + m2V21
½ miV10? + ½ m2V20? = ½ m¡V11? + ½ m2v21?
m¡V10 + m2v20 = (m¡+m2)VTI
(mi+m2)VT0 = m¡Vj1 + m2V21
(m2-m1
m,+m2
(Em;) Zem = E(m;z;)
(mi-m2) V10 +
m1+m2/
2m2
2m1
V11
V20
V21 =
V20 +
|V10
\m,+m2/
(Σm) xem- Σ(mx )
Av, = +Ve In(M/M¡)
0 = 0o + @ot + ½ at²
\m,+m2/
(Σm ) yem Σ(my )
Fth = v(dm/dt)
mtotalXCM =
o? = 00? + 2a(0–0)
@ = Wo + at
<a> = A@/At
<@> = AÐ/At
Vcm = ro
S = r0
a(t) = d²0/dt?
T = rleverF
TAB = -TBA
I= Iem + Md²
@(t) = d0/dt
a(t) = d@/dt
T = rFsino
Et = dL/dt
I = BMR?
L =r xp
T =r x F
dW; = t;· de
I= E m,r;?
Op = (mgrsin0)/(Io)
Στ-Ια
Krot = ½ Io?
rjever = rsino
I010 + I2020 = I011 + I2021
(I1+I2)@ro = I10i1 + I2@21
L = Io
ΔL TΔt
I010 + I2020 = (I1+I2)@T1
I10010 = I1101
1/2
Transcribed Image Text:x(t) = x0 + Voxt + ½ axt² y(t) = yo + Voyt + ½ ayt² Vx (t) = Vox? + 2ax(x-xo) Vy (t) = Voy + 2a,(y-yo) v(t) = dx/dt a(t) = d?x/dt? Vx(t) = Vox + axt Vy(t) = Voy + ayt <V> = (vo + V1) / 2 <a> = (V1 – Vo)/(tj – to) r = x² + y? (Vo + V1) / 2 = Ar/At a(t) = dv/dt x = rcose <V> = Ar/At <a> = Av/At |A| = (A,? + A,?)2 Â = A y = rsin0 a = ac(-f) + arê® ac = Vr/r a. = m²r VT = (2nr)/T ac = 4n°r/T? ar = dvf/dt VT = or f = o/2n f = 1/T rP/A = rP/B + rB/A VP/A = VP/B + VB/A ap/A = ap/B + aB/A m, m2 EF¡ = ma F12 = -F21 = G (-12) fs,max = lsFN F = mv²/r fk = µkFN Fe = mac Fdrag = -by Fdrag = ½ DpAv² (-8) 2mg Vt = mg/b Vt = dW; = F; · dr Wi = F; · Ar Ug = mgy AUint = fgAs n = Pout/Pin (X 100%) V DpA K = ½ mv? Usp = ½ k(x-xrel)? P = dW/dt AK = ½ m (v1²-vo²) Fsp = -k (x-Xrel) P = dU/dt = dp/dt ΣW ΔΚ P = F•v <ΣF-Δp/Δt p= mv miv10 + m2v20 = m¡v11 + m2V21 ½ miV10? + ½ m2V20? = ½ m¡V11? + ½ m2v21? m¡V10 + m2v20 = (m¡+m2)VTI (mi+m2)VT0 = m¡Vj1 + m2V21 (m2-m1 m,+m2 (Em;) Zem = E(m;z;) (mi-m2) V10 + m1+m2/ 2m2 2m1 V11 V20 V21 = V20 + |V10 \m,+m2/ (Σm) xem- Σ(mx ) Av, = +Ve In(M/M¡) 0 = 0o + @ot + ½ at² \m,+m2/ (Σm ) yem Σ(my ) Fth = v(dm/dt) mtotalXCM = o? = 00? + 2a(0–0) @ = Wo + at <a> = A@/At <@> = AÐ/At Vcm = ro S = r0 a(t) = d²0/dt? T = rleverF TAB = -TBA I= Iem + Md² @(t) = d0/dt a(t) = d@/dt T = rFsino Et = dL/dt I = BMR? L =r xp T =r x F dW; = t;· de I= E m,r;? Op = (mgrsin0)/(Io) Στ-Ια Krot = ½ Io? rjever = rsino I010 + I2020 = I011 + I2021 (I1+I2)@ro = I10i1 + I2@21 L = Io ΔL TΔt I010 + I2020 = (I1+I2)@T1 I10010 = I1101 1/2
F
ΔF
ΔΡ
Y =
B =
B =
AV
S =
Vo
x(t) = Xmax cOs(@t + 0)
T= 27 (L/g)'2
@ = (k/m)'2
T= 27 (I/mgd)"2
Vmax = OXmax
amax = 0ʻxmax
y(x,t) = ymax Ssin(kx + @t + þ)
v = f.
a?y
Odamped = ( (k/m) – (b/2m)² )'/²
y(x,t) = ymax sin(kx - ot + ¢)
2 = 2n/k
v = @/k
1 д?у
v = (Fr/u)2
µ = m/L
<Pwave> = ½ uymax-@ʻv
əx²
v² at2
ΔΡ
%3D
max
Bksmax AP,
= pwvsSmax
Vsound =
Vsound = 343 m/s
max
TC
Vsound =
(331-) 1+
Vsound 331 m/s + (0.60 m/s°C) Tc
273 °C
APmax
I =
2ρν
10 dB = 1 B
<P>
B = log ()
P = pvosmax A sin°(kx-@t)
I, = 10-12 W/m² (exactly)
I =
%3D
4tr2
fobserver = fsource
(Vsound+Vobserver
sin(A) + sin(B) = 2 cos (-4):
sin ()
Vsound-Vsource
0 = 2tn (const)
0 = T(2n+1) (dest)
An = 4L/(2n-1)
fn = (2n-1)v/4L
AV = V.B(T1-To) AL=La(T1-To)
Q = mLv
AEint = W + Q
n = 0, ±1, ±2,..
An = 2L/n
fn = nv/2L
n = 1, 2, 3, ...
Af = |f1 – f2|
B= 3a
Q = mLf
AEcyele
PV = nRT
Q = mcAT
W = - SP dV
AT = Tinal - Tinitial
Wisobaric = -PAV
Vfinal
\Vinitial-
= 0
Wisovolumetric = 0
Qadiabatic = 0
Qisothermal
= nRT In
R = Ax/k
4
Pradiated = GAETK*
TK = Tc + 273.15
Ktot = ( ½ NKBT) * degrees of freedom (dof)
8kgT
P = kA|dT/dx|
Pnet = GAe (Tsource – Tobject")
½ mo<v?> = ½ kgT
3kgT
kB = R/NA
2kgT
VRMS =
Vavg
Vmost likely
mo
Timo
V mo
3RT
8RT
2RT
VRMS =
Vavg
Vmost likely
M
M
AEint = Q = nCyAT Q=nCpAT
P¡V = P2V2Y
CoP = |Q/|W|
dS = dQreversible/T ASfree expand = nR In(V2/V1)
Ср 3D Су + R
Y = Cp/Cy
n = |W]/lQH|
Cy = ½ R * dof
T¡V;! = T2V;*1
n = 1 – (IQc/IQH|)
Notto = 1– (V2/V)-!
= 0
NCarnot = 1 – (T/TH)
ASCarnot
%3D
Transcribed Image Text:F ΔF ΔΡ Y = B = B = AV S = Vo x(t) = Xmax cOs(@t + 0) T= 27 (L/g)'2 @ = (k/m)'2 T= 27 (I/mgd)"2 Vmax = OXmax amax = 0ʻxmax y(x,t) = ymax Ssin(kx + @t + þ) v = f. a?y Odamped = ( (k/m) – (b/2m)² )'/² y(x,t) = ymax sin(kx - ot + ¢) 2 = 2n/k v = @/k 1 д?у v = (Fr/u)2 µ = m/L <Pwave> = ½ uymax-@ʻv əx² v² at2 ΔΡ %3D max Bksmax AP, = pwvsSmax Vsound = Vsound = 343 m/s max TC Vsound = (331-) 1+ Vsound 331 m/s + (0.60 m/s°C) Tc 273 °C APmax I = 2ρν 10 dB = 1 B <P> B = log () P = pvosmax A sin°(kx-@t) I, = 10-12 W/m² (exactly) I = %3D 4tr2 fobserver = fsource (Vsound+Vobserver sin(A) + sin(B) = 2 cos (-4): sin () Vsound-Vsource 0 = 2tn (const) 0 = T(2n+1) (dest) An = 4L/(2n-1) fn = (2n-1)v/4L AV = V.B(T1-To) AL=La(T1-To) Q = mLv AEint = W + Q n = 0, ±1, ±2,.. An = 2L/n fn = nv/2L n = 1, 2, 3, ... Af = |f1 – f2| B= 3a Q = mLf AEcyele PV = nRT Q = mcAT W = - SP dV AT = Tinal - Tinitial Wisobaric = -PAV Vfinal \Vinitial- = 0 Wisovolumetric = 0 Qadiabatic = 0 Qisothermal = nRT In R = Ax/k 4 Pradiated = GAETK* TK = Tc + 273.15 Ktot = ( ½ NKBT) * degrees of freedom (dof) 8kgT P = kA|dT/dx| Pnet = GAe (Tsource – Tobject") ½ mo<v?> = ½ kgT 3kgT kB = R/NA 2kgT VRMS = Vavg Vmost likely mo Timo V mo 3RT 8RT 2RT VRMS = Vavg Vmost likely M M AEint = Q = nCyAT Q=nCpAT P¡V = P2V2Y CoP = |Q/|W| dS = dQreversible/T ASfree expand = nR In(V2/V1) Ср 3D Су + R Y = Cp/Cy n = |W]/lQH| Cy = ½ R * dof T¡V;! = T2V;*1 n = 1 – (IQc/IQH|) Notto = 1– (V2/V)-! = 0 NCarnot = 1 – (T/TH) ASCarnot %3D
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Convection
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY