Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Charge Q = 4.00 μC is distributed uniformly over the volume of an insulating sphere that has radius R = 11.0 cm. A small sphere with charge q =+ 3.00 μC and mass 6.00×10^−5kg is projected toward the center of the large sphere from an initial large distance. The large sphere is held at a fixed position and the small sphere can be treated as a point charge.
What minimum speed must the small sphere have in order to come within 8.00 cm of the surface of the large sphere?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Problems 72, 73, and 74 are grouped. 72. A Figure P26.72 shows a source consisting of two identical parallel disks of radius R. The x axis runs through the center of each disk. Each disk carries an excess charge uniformly distributed on its surface. The disk on the left has a total positive charge Q, and the disk on the right has a total negative charge Q. The distance between the disks is 3R, and point A is 2R from the positively charged disk. Find an expression for the electric potential at point A between the disks on the x axis. Approximate any square roots to three significant figures. FIGURE P26.72 Problems 72, 73, and 74.arrow_forwardFour charged particles are at rest at the corners of a square (Fig. P26.14). The net charges are q1 = q2 = 2.65 C and q3 = q4 = 5.15 C. The distance between particle 1 and particle 3 is r13 = 1.75 cm. a. What is the electric potential energy of the four-particle system? b. If the particles are released from rest, what will happen to the system? In particular, what will happen to the systems kinetic energy as their separations become infinite? FIGURE P26.14 Problems 14, 15, and 16.arrow_forwardFour charged particles are at rest at the corners of a square (Fig. P26.14). The net charges are q1 = q2 = +2.65 C and q3 = q4 = 5.15 C. The distance between particle 1 and particle 3 is r13 = 1.75 cm. a. What is the electric potential energy of the four-particle system? b. If the particles are released from rest, what will happen to the system? In particular, what will happen to the systems kinetic energy?arrow_forward
- Four balls, each with mass m, are connected by four nonconducting strings to form a square with side a as shown in Figure P25.74. The assembly is placed on a nonconducting. frictionless. horizontal surface. Balls 1 and 2 each have charge q, and balls 3 and 4 are uncharged. After the string connecting halls 1 and 2 is cut, what is the maximum speed of balls 3 and 4?arrow_forwarda. Figure 24.22A shows a rod of length L and radius R with excess positive charge Q. The excess charge is uniformly distributed over the entire outside surface of the rod. Write an expression for the surface charge density . Write an expression in terms of for the amount of charge dq contained in a small segment of the rod of length dx. b. Figure 24.22B shows a very narrow rod of length L with excess positive charge Q. The rod is so narrow compared to its length that its radius is negligible and the rod is essentially one-dimensional. The excess charge is uniformly distributed over the length of the rod. Write an expression for the linear charge density . Write an expression in terms of for the amount of charge dq contained in a small segment of the rod of length dx. Compare your answers with those for part (a). Explain the similarities and differences.arrow_forwardA Two positively charged spheres with charges 4e and e are separated by a distance L and held motionless. A third charged sphere with charge Q is set between the two spheres and along the line joining them. The third sphere is in static equilibrium. What is the distance between the third charged sphere and the sphere that has charge 4e?arrow_forward
- A particle with charge +q is at the origin. A particle with charge 2q is at x = 2.00 m on the x axis. (a) For what finite value(s) of x is the electric field zero? (b) For what finite value(s) of x is the electric potential zero?arrow_forwardThree charged particles are arranged on corners of a square as shown in Figure OQ19.14, with charge Q on both the particle at the upper left corner and the particle at the lower right corner and with charge +2Q on the particle at the lower left corner. (i) What is the direction of the electric field at the upper right corner, which is a point in empty space? (a) It is upward and to the right. (b) It is straight to the right. (c) It is straight downward. (d) It is downward and to the left. (e) It is perpendicular to the plane of the picture and outward. (ii) Suppose the +2 Q charge at the lower left corner is removed. Then does the magnitude of the field at the upper right corner (a) become larger, (b) become smaller, (c) stay the same, or (d) change unpredictably? Figure OQ19.14arrow_forwardA particle with charge 1.60 1019 C enters midway between two charged plates, one positive and the other negative. The initial velocity of the particle is parallel to the plates and along the midline between them (Fig. P26.48). A potential difference of 300.0 V is maintained between the two charged plates. If the lengths of the plates are 10.0 cm and they are separated by 2.00 cm, find the greatest initial velocity for which the particle will not be able to exit the region between the plates. The mass of the particle is 12.0 1024 kg. FIGURE P26.48arrow_forward
- Three charged spheres are at rest in a plane as shown in Figure P23.70. Spheres A and B are fixed, but sphere C is attached to the ceiling by a lightweight thread. The tension in the string is 0.240 N. Spheres A and B have charges qA = 28.0 nC and qB = 28.0 nC. What charge is carried by sphere C?arrow_forwardTwo 5.00-nC charged particles are in a uniform electric field with a magnitude of 625 N/C. Each of the particles is moved from point A to point B along two different paths, labeled in Figure P26.65. a. Given the dimensions in the figure, what is the change in the electric potential experienced by the particle that is moved along path 1 (black)? b. What is the change in the electric potential experienced by the particle that is moved along path 2 (red)? c. Is there a path between the points A and B for which the change in the electric potential is different from your answers to parts (a) and (b)? Explain. FIGURE P26.65 Problems 65, 66, and 67.arrow_forwardConsider the final arrangement of charged particles shown in Figure P26.7. What is the work necessary to build such an arrangement of particles, assuming they were originally very far from one another? FIGURE P26.7 Problems 7 and 28.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning