College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Calculate the index of refraction for a piece of glass that is
3.5
cm thick if the ray inside the glass makes an angle of
25.4
degree with respect to the normal when the incident ray makes an angle of
49
degree with respect to the normal. Please draw the figure and label the angles.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps with 1 images
Knowledge Booster
Similar questions
- You have a slab of diamond that is attached to a slab of sapphire. A laser beam starts off in the diamond (index of refraction =2.42) and then exits into sapphire (index of refraction =1.77). The beam makes an angle of 30 degrees with the normal in the diamond. What is the maximum angle of incidence that the laser will refract into the sapphire?arrow_forwardA ray of light travels through air until it strikes the interface between the air and another medium. The incident ray makes an angle of ?1 = 34.0° with the normal, as shown in the figure below. Upon passage into the second medium, the ray is refracted, emerging from the interface at an angle ?2 with respect to the normal. A light ray in air is moving down and to the right and is incident on a second medium. It makes an angle ?1 with the vertical. Inside the vertical, it continues to move down and to the right but at a steeper slope than the incident ray. It makes an angle ?2 with the vertical. (a) Suppose that the second medium is flint glass. What is the angle of refraction, ?2 (in degrees)? (Enter your answer to at least one decimal place.) ° (b) Suppose that the second medium is fused quartz. What is the angle of refraction, ?2, in this case (in degrees)? (Enter your answer to at least one decimal place.) ° (c) Finally, suppose that the second medium is ethyl…arrow_forwardThe index of refraction of water is 1.33 and the index of refraction of crown glass is 1.52. Whichstatement about the speed of light in these materials is true?a) The speed of light is the same in water and crown glass.b) The speed of light in water is faster than the speed of light in crown glass.c) The speed of light in crown glass is faster than the speed of light in water.d) More information is needed to compare the speed of light in the materials.arrow_forward
- A light ray in the core (n=1.40) of a cylindrical optical fiber is incident on the cladding. A ray is transmitted through the cladding (n= 1.20) and into the air. The emerging ray makes an angle 02 = 6.10° with the outside surface of the cladding. What angle 01 did the ray in the core make with the axis? Airarrow_forwardWhite light enters flint glass from air (n₁ = 1). The angle of incidence is 8, = 63 degrees. Due to dispersion in the glass, the index of refraction for red light is 1.662, while the index for violet light is 1.698. Due to this difference, the violet and red parts of white light are refracted by different amounts. What is the difference in refraction angle (AO) between violet and red fin this situation? A0 = degrees n₁ n₂ refracted raysarrow_forwardThe figure below shows the path of a light beam through several slabs with different indices of refraction. (n4 = 1.01) 10% = n = 1.60 n = 1.40 n = 1.20 14 (a) If 01 35.0°, what is the angle 02 of the emerging beam? 63.12 X Your response is within 10% of the correct value. This may be due to roundoff error, or you could have a mistake in your calculation. Carry out all intermediate results to at least four-digit accuracy to minimize roundoff error.ºarrow_forward
- As shown in the figure, a light beam travels from air, through olive oil, and then into water. If the angle of refraction 82 for the light in the olive oil is 34.8°, determine the angle of incidence e, in air and the angle of refraction e3 in water. The index of refraction for olive oil is 1.47. 83 = air oil waterarrow_forwardray of light strikes a flat block of glass at an incidence angle of ?1 = 38.6°. The glass is 2.00 cm thick and has an index of refraction that equals ng = 1.52. a.)What is the angle of refraction, ?2, that describes the light ray after it enters the glass from above? (Enter your answer in degrees to at least 2 decimal places.) b.) With what angle of incidence, ?3, does the ray approach the interface at the bottom of the glass? (Enter your answer in degrees to at least 2 decimal places.) c.) With what angle of refraction, ?4, does the ray emerge from the bottom of the glass? (Enter your answer in degrees to at least 1 decimal place.) d.) The distance d separates the twice-bent ray from the path it would have taken without the glass in the way. What is this distance (in cm)? e.) At what speed (in m/s) does the light travel within the glass? f.) How many nanoseconds does the light take to pass through the glass along the angled path shown here?arrow_forwardAs shown in the figure, a light beam travels from air, through olive oil, and then into water. If the angle of refraction 02 for the light in the olive oil is 28.2°, determine the angle of incidence 0, in air and the angle of refraction 03 in water. The index of refraction for olive oil is 1.47. 01 = 03 = air n2 oil 13 waterarrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON