Elements Of Electromagnetics
7th Edition
ISBN: 9780190698614
Author: Sadiku, Matthew N. O.
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Question
A heat engine operated as a reversible Carnot cycle using 1 kg of air as a working fluid between 500 degrees of a high heat source and 27 degrees of a low heat source is operated at 60 cycles per minute. If both the pressure P2 after isothermal expansion and the pressure P4 after isothermal compression are 30Pa, calculate how many kWh of the output power is generated during an hour by this cycle.
Air gas constant : 0.287 J/kgK, specific ratio : 1.4
answer : 449.7 kWh
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps with 5 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A power cycle operates between two thermal reservoirs at 300 K and 800 K. The working fluid of the cycle is air, which can be considered to be an ideal gas. Specific heats are not assumed to be constant. An inventor claims that for a heat input of 250 kJ, the net work from the cycle is 80 kJ. The work generating component in the cycle is a reversible, steady state turbine. The inlet pressure and temperature are 1000 kPa and 600 K and the exit temperature is 550 K. The turbine receives 150 kJ/kg of heat from the high temperature reservoir and loses 10 kJ/kg of heat to the ambient at 298 K. (a) Prove whether or not the overall cycle is possible using second law arguments. (b) determine the work done by the turbine [kJ/kg]arrow_forwardConsider a variation of the Carnot cycle in a closed system with 10 kg of pure water operating. ranging between temperatures of 130 C and 350 ◦C. State 1 is a saturated liquid. Process 1-2 is a isothermal expansion with a supply of QH = 10 MJ. Process 2-3 is an adiabatic expansion with isentropic efficiency from 0.75 to minimum temperature. Process 3-4 is a compression isothermal, and the 4-1 process is a reversible adiabatic compression. Calculate: a. The pressure p2, the bonds x4 and x3, and the specific entropies s1 and s3; b. The work in each expansion and compression process; c. The heat rejected QL, the net work produced Wl i q and the yield η of the cycle; d. The entropy generated Sg in the cyclearrow_forwardIf one measurement is conducted in the four processes and shows that the pressure ratio (P3/P2)in the adiabatic expansion is 1.2 times the pressure ratio (P4/P1) in the adiabatic compression, can you justify if it is a Carnot engine? Please give your reasonarrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY