MATLAB: An Introduction with Applications
6th Edition
ISBN: 9781119256830
Author: Amos Gilat
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.Similar questions
- The table below gives the number of hours seven randomly selected students spent studying and their corresponding midterm exam grades. Using this data, consider the equation of the regression line, yˆ=b0+b1x, for predicting the midterm exam grade that a student will earn based on the number of hours spent studying. Keep in mind, the correlation coefficient may or may not be statistically significant for the data given. Remember, in practice, it would not be appropriate to use the regression line to make a prediction if the correlation coefficient is not statistically significant. Hours Studying 2 2.5 3 3.5 4 5 5.5 Midterm Grades 63 67 76 78 84 85 90 Table Step 6 of 6 : Find the value of the coefficient of determination. Round your answer to three decimal places.arrow_forwardThe table below gives the number of hours seven randomly selected students spent studying and their corresponding midterm exam grades. Using this data, consider the equation of the regression line, yˆ=b0+b1x, for predicting the midterm exam grade that a student will earn based on the number of hours spent studying. Keep in mind, the correlation coefficient may or may not be statistically significant for the data given. Remember, in practice, it would not be appropriate to use the regression line to make a prediction if the correlation coefficient is not statistically significant. Hours Studying 1 1.5 2 2.5 3 3.5 4.5 Midterm Grades 61 62 75 77 79 83 88 Table Step 1 of 6 : Find the estimated slope, y intercept and correlation cofficient. Round your answer to three decimal places.arrow_forwardWorking as a professor, I may want to try and predict success on a final exam by student success on exam 1 and see whether or not there is a relationship between those. I gather data from a set of students and obtain their first exam score and their final exam score. Using the following data, find the Pearson’s r correlation coefficient, produce a linear regression equation, and describe the associated R2 value. First exam score (X) Final exam score (Y) 95 100 90 92 95 90 85 90 85 85 80 75 65 75 60 50 70 82 90 95 80 100 90 90 75 60 75 80 Pearson’s r = ______________ Is the r significant? _______________ Linear regression equation: ____________________arrow_forward
- The table below gives the age and bone density for 5 women. Use the equation of the regression line, y= b0 + b1x, for predicting a women's bone density based on her age. The correlation coefficient may or may not be statically significant for the data given. Remember it wouldn't be appropiate to use regression line to make a prediction if the correlation coefficient isn;t statically significant. (y has a "hat" on the top) age 39 51 54 56 67 bone density 355 349 347 315 313 Find the estimated slope. Rund your answer to three decimal places. Find the estimated y-intercept. Round your answer to three decimal places. Determine the value of the dependent variable y at x+ 0 (y has a "hat" onthe top) Find the estimated value of y when x = 51. Round your answer to three decimal places. Substitute the values you found in steps 1 and 2 into the equation for the regression line to find the estimated linear model. According to this model, if the valueof the…arrow_forwardThe table below gives the number of hours spent unsupervised each day as well as the overall grade averages for five randomly selected middle school students. Using this data, consider the equation of the regression line, yˆ=b0+b1x, for predicting the overall grade average for a middle school student based on the number of hours spent unsupervised each day. Keep in mind, the correlation coefficient may or may not be statistically significant for the data given. Remember, in practice, it would not be appropriate to use the regression line to make a prediction if the correlation coefficient is not statistically significant. Hours Unsupervised 2 3 4 5 6 Overall Grades 94 86 79 71 62 Table Step 1 of 6 : Find the estimated slope, y intercept and correlation coefficient Round your answer to three decimal places. Answerarrow_forwardA statistical program is recommended. The owner of Showtime Movie Theaters, Inc., would like to predict weekly gross revenue as a function of advertising expenditures. Historical data for a sample of eight weeks follow. Weekly Television Gross Newspaper Advertising Advertising ($1,000s) ($1,000s) Revenue ($1,000s) 96 5.0 1.5 90 2.0 2.0 95 4.0 1.5 92 2.5 2.5 95 3.0 3.3 94 3.5 2.3 94 2.5 4.2 94 3.0 2.5 1 (a) Develop an estimated regression equation with the amount of television advertising as the independent variable. (Round your numerical values to two decimal places. Let x₁ represent the amount of television advertising in $1,000s and y represent the weekly gross revenue in $1,000s.) y = 88.64 + 1.60x1 X (b) Develop an estimated regression equation with both television advertising and newspaper advertising as the independent variables. (Round your numerical values to two decimal places. Let x₁ represent the amount of television advertising in $1,000s, x₂ represent the amount of…arrow_forward
- The table below gives the number of hours spent unsupervised each day as well as the overall grade averages for seven randomly selected middle school students. Using this data, consider the equation of the regression line, yˆ=b0+b1x, for predicting the overall grade average for a middle school student based on the number of hours spent unsupervised each day. Keep in mind, the correlation coefficient may or may not be statistically significant for the data given. Remember, in practice, it would not be appropriate to use the regression line to make a prediction if the correlation coefficient is not statistically significant. Hours Unsupervised 0 1 1.5 2.5 4 5.5 6 Overall Grades 98 86 85 83 80 78 67 Table Step 1 of 6: Find the estimated slope, y intercept, correlation cofficient Round your answers to three decimal places.arrow_forwardThe table below gives the number of hours spent unsupervised each day as well as the overall grade averages for five randomly selected middle school students. Using this data, consider the equation of the regression line, yˆ=b0+b1x, for predicting the overall grade average for a middle school student based on the number of hours spent unsupervised each day. Keep in mind, the correlation coefficient may or may not be statistically significant for the data given. Remember, in practice, it would not be appropriate to use the regression line to make a prediction if the correlation coefficient is not statistically significant. Hours Unsupervised 0 1 3 4 5 Overall Grades 95 92 85 81 62 Table Step 4 of 6 : Find the estimated value of y when x=3. Round your answer to three decimal places. Answer How to enter your answer (opens in new window)arrow_forwardThe table below gives the number of hours spent unsupervised each day as well as the overall grade averages for seven randomly selected middle school students. Using this data, consider the equation of the regression line, yˆ=b0+b1x, for predicting the overall grade average for a middle school student based on the number of hours spent unsupervised each day. Keep in mind, the correlation coefficient may or may not be statistically significant for the data given. Remember, in practice, it would not be appropriate to use the regression line to make a prediction if the correlation coefficient is not statistically significant. Hours Unsupervised 1 2 3 4 4.5 5 5.5 Overall Grades 98 95 93 90 89 72 69 Table Copy Data Step 2 of 6 : Find the estimated y-intercept. Round your answer to three decimal places.arrow_forward
- In a fisheries researchers experiment the correlation between the number of eggs in tge nest and the number of viable (surviving ) eggs for a sample of nests is r=0.67 the equation of the regression line for number of viable eggs y versus number of eggs in the nest x is y =0.72x + 17.07 for a nest with 140 eggs what is the predicted number of viable eggs ?arrow_forwardIf you know that the equation of the simple linear regression between the final exam result and the mid-year examination result for students in engineering statistics is as follows: Final exam = 50 + 0.5 x midterm according to the above equation, then the regression coefficient is:arrow_forwardThe police chief believes that maintenance costs on high-mileage police vehicles are much higher than those costs for low-mileage vehicles. If high-mileage vehicles are costing too much, it may be more economical to purchase more vehicles. An analyst in the department regresses yearly maintenance costs (Y) for a sample of 200 police vehicles on each vehicle’s total mileage for the year (X). The regression equation finds: Y = $50 + .030X with a r2 of .90 If a vehicle’s mileage for the year is 50,000, what is its predicted maintenance costs? What does an r2 of .90 tell us? Is this a strong or weak correlation? How can you tell?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- MATLAB: An Introduction with ApplicationsStatisticsISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncProbability and Statistics for Engineering and th...StatisticsISBN:9781305251809Author:Jay L. DevorePublisher:Cengage LearningStatistics for The Behavioral Sciences (MindTap C...StatisticsISBN:9781305504912Author:Frederick J Gravetter, Larry B. WallnauPublisher:Cengage Learning
- Elementary Statistics: Picturing the World (7th E...StatisticsISBN:9780134683416Author:Ron Larson, Betsy FarberPublisher:PEARSONThe Basic Practice of StatisticsStatisticsISBN:9781319042578Author:David S. Moore, William I. Notz, Michael A. FlignerPublisher:W. H. FreemanIntroduction to the Practice of StatisticsStatisticsISBN:9781319013387Author:David S. Moore, George P. McCabe, Bruce A. CraigPublisher:W. H. Freeman
MATLAB: An Introduction with Applications
Statistics
ISBN:9781119256830
Author:Amos Gilat
Publisher:John Wiley & Sons Inc
Probability and Statistics for Engineering and th...
Statistics
ISBN:9781305251809
Author:Jay L. Devore
Publisher:Cengage Learning
Statistics for The Behavioral Sciences (MindTap C...
Statistics
ISBN:9781305504912
Author:Frederick J Gravetter, Larry B. Wallnau
Publisher:Cengage Learning
Elementary Statistics: Picturing the World (7th E...
Statistics
ISBN:9780134683416
Author:Ron Larson, Betsy Farber
Publisher:PEARSON
The Basic Practice of Statistics
Statistics
ISBN:9781319042578
Author:David S. Moore, William I. Notz, Michael A. Fligner
Publisher:W. H. Freeman
Introduction to the Practice of Statistics
Statistics
ISBN:9781319013387
Author:David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:W. H. Freeman