C2, if A act on C2, where A = [a1a2], αγ = (-3, 2), a2 = (-1, – 5) = a₂ Ο λ = -4 + i, (1 - i, 2); λ = -4 – i, (1 + i, 2) Ο λ=4-i, (1 + i, 2) ; λ = 4 + i, (1 – i, 2) - Ο λ = -4 + i, (1 + i, 2) ; λ = -4 – i, [1 – i, 2) Ο λ=4-i, (1 – i, 2) ; λ = 4 + i, [1 + i, 2) Ο λ = -3 + i, (2 + i, 5); λ = -3 – i, (2 – i, 5) = - Ο λ = 3 – i, (2 – i, 5) ; λ = 3 + i, (2 + i, 5)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Find the eigenvalues and a basis for each eigenspace in

C², if A act on C², where A = [a₁ a2], a₁ = (−3, 2), a2 = (−1, −5)
O
λ = −4+ i, (1 - i, 2); λ = −4 − i, (1 + i, 2)
2
-
Oλ=4-i, (1 + i, 2) ; λ = 4 + i, (1 − i, 2)
-
O 2-4 + i, (1 + i, 2); λ = -4 - i, [1 - i, 2)
=
Oa4-i, (1 - i, 2); λ = 4 + i, [1 + i, 2)
Ο
=
λ = −3+ i, (2 + i, 5); λ = −3 − i, (2 — i, 5)
O2 = 3-i, (2 − i, 5); λ = 3 + i, (2 + i, 5)
Transcribed Image Text:C², if A act on C², where A = [a₁ a2], a₁ = (−3, 2), a2 = (−1, −5) O λ = −4+ i, (1 - i, 2); λ = −4 − i, (1 + i, 2) 2 - Oλ=4-i, (1 + i, 2) ; λ = 4 + i, (1 − i, 2) - O 2-4 + i, (1 + i, 2); λ = -4 - i, [1 - i, 2) = Oa4-i, (1 - i, 2); λ = 4 + i, [1 + i, 2) Ο = λ = −3+ i, (2 + i, 5); λ = −3 − i, (2 — i, 5) O2 = 3-i, (2 − i, 5); λ = 3 + i, (2 + i, 5)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,