
Calculus: Early Transcendentals
8th Edition
ISBN: 9781285741550
Author: James Stewart
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
thumb_up100%
![(c) Prove that every function f(x) can be written as a sum of an even function and an odd function.
For any function f with domain R, define functions E(x) = f(x) + f(-x) and O(x) = f(x) = f(-x), as in parts (a) and (b). Then
answers completely.)
1 E(X) + 10(x) = [1(x) + f(
1 [(x) +1
[2x]
[)] + 1/ [~ - - ]
]])) + f(x) = f(-x)}]
(d) Using parts (a), (b), and (c), express the function f(x) = 2*+ (x - 3)2 as a sum of an even function and an odd function.
-²¹ (2x + (x − 3)² + 2²× + (x + 3)²) + ½ (2× + (x − 3)² − 2−× − (x + 3)²)
O f(x) = (2x + (x-3)² - 2x - (x + 3)²) + (2x + (x − 3)² - 2* — (x + 3)²)
O f(x) =
O f(x) = (2x + (x-3)² + 2* + (x + 3)²) - ¹½ (2* + (x − 3)² − 2²* − (x + 3)²)
O f(x) = (2x + (x − 3)² + 2x + (x + 3)²) - (2* + (x − 3)² – 2* − (x + 3)²)
O fx) = (2x + (x-3)² -2¯* - (x + 3)²) + ¹ (2* + (x − 3)² - 27* - (x + 3)²)
O f(x) = (2x + (x-3)² + 2x + (x + 3)²) + (2x + (x − 3)² - 2* - (x + 3)²)
is-Select- ,20 is Select, and we show that f(x)=E(x) +10(x). (Simplify your](https://content.bartleby.com/qna-images/question/be983b18-ee33-44db-82aa-7c6bfcc1e549/1f47de0e-7d62-4f23-a5bc-7709e11a6295/mwgy70c_thumbnail.jpeg)
Transcribed Image Text:(c) Prove that every function f(x) can be written as a sum of an even function and an odd function.
For any function f with domain R, define functions E(x) = f(x) + f(-x) and O(x) = f(x) = f(-x), as in parts (a) and (b). Then
answers completely.)
1 E(X) + 10(x) = [1(x) + f(
1 [(x) +1
[2x]
[)] + 1/ [~ - - ]
]])) + f(x) = f(-x)}]
(d) Using parts (a), (b), and (c), express the function f(x) = 2*+ (x - 3)2 as a sum of an even function and an odd function.
-²¹ (2x + (x − 3)² + 2²× + (x + 3)²) + ½ (2× + (x − 3)² − 2−× − (x + 3)²)
O f(x) = (2x + (x-3)² - 2x - (x + 3)²) + (2x + (x − 3)² - 2* — (x + 3)²)
O f(x) =
O f(x) = (2x + (x-3)² + 2* + (x + 3)²) - ¹½ (2* + (x − 3)² − 2²* − (x + 3)²)
O f(x) = (2x + (x − 3)² + 2x + (x + 3)²) - (2* + (x − 3)² – 2* − (x + 3)²)
O fx) = (2x + (x-3)² -2¯* - (x + 3)²) + ¹ (2* + (x − 3)² - 27* - (x + 3)²)
O f(x) = (2x + (x-3)² + 2x + (x + 3)²) + (2x + (x − 3)² - 2* - (x + 3)²)
is-Select- ,20 is Select, and we show that f(x)=E(x) +10(x). (Simplify your
Expert Solution

arrow_forward
Step 1
Step by stepSolved in 3 steps with 3 images

Knowledge Booster
Similar questions
- Find f-1(x) for the function f(x) =- In X-2 X+5 f1(x) = (Simplify your answer.)arrow_forwardf(x) = x2 - 16. Is f increasing or decreasing and on what?arrow_forwardLet f(x) = = √9 - x + 5. Determine f-¹(x) and the the domain of f¹(x). ƒ-¹(x) Domain of f-¹(x) = = (Write the domain using interval notation.)arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning

Calculus: Early Transcendentals
Calculus
ISBN:9781285741550
Author:James Stewart
Publisher:Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:9780134438986
Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:9780134763644
Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:9781319050740
Author:Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:W. H. Freeman


Calculus: Early Transcendental Functions
Calculus
ISBN:9781337552516
Author:Ron Larson, Bruce H. Edwards
Publisher:Cengage Learning