b. 6. Use the limit comparison test to determine the convergence of the series. 2 3"-5 a. b. a. b. C. d. 1 n=1 4√n-1 7. For each of the series below, use at least two of the tests to determine the convergence of the series. Each test should be used at least once. Choose from: nth-term test, p-series test, integral test, limit comparison test, geometric series test, telescoping series test, direct comparison test. Clearly indicate which tests you are using. (-3)* 1 ¹3n²-2n-15 a. n=1 b. n=1 C. n=1 WW n=1 n=1 n=1 n=1 tan n=1 Zn=1 n 1 ¹3" +2 e. Yo f. E=1 n+6" 1 g. Σ=1 1 n¹+n 00 n=0 n 2n +3 n=1 2 n + n-1 n²√n n+4" 500 (-1)+1√√n Σn=1 3√n (-1)^n² n² +1 сOS NÃ d. Σ(-1)"e-n² e. Σ(-1)"+¹ arctan n C. f. Ex-1(-1)" sin (7) n=1 n=1n(n² +1) 8. Determine the convergence or divergence of the series. If the series converges, does it converge absolutely or conditionally? h. i. 1 j. k. n=0 n=4 i. 1 1 n+1 n+2, 3 n=1 n(n+3) 1.00 n=1 k. Zk=1 m. Σ=1 n 1 n. 1 sin / 100 (-1)"+¹ In(n+1) n+1 n=1 j. Ŝ (-1)"+¹ √n n=1 n+2 (2k-1) (k²-1) (k+1)(k²+4) e1/n n=2 1. Ž (-1)" Inn COSNT n=0 n+1 m. E-1(-1)-12/n 00 n. Ln=1 (-1)^nn n!
b. 6. Use the limit comparison test to determine the convergence of the series. 2 3"-5 a. b. a. b. C. d. 1 n=1 4√n-1 7. For each of the series below, use at least two of the tests to determine the convergence of the series. Each test should be used at least once. Choose from: nth-term test, p-series test, integral test, limit comparison test, geometric series test, telescoping series test, direct comparison test. Clearly indicate which tests you are using. (-3)* 1 ¹3n²-2n-15 a. n=1 b. n=1 C. n=1 WW n=1 n=1 n=1 n=1 tan n=1 Zn=1 n 1 ¹3" +2 e. Yo f. E=1 n+6" 1 g. Σ=1 1 n¹+n 00 n=0 n 2n +3 n=1 2 n + n-1 n²√n n+4" 500 (-1)+1√√n Σn=1 3√n (-1)^n² n² +1 сOS NÃ d. Σ(-1)"e-n² e. Σ(-1)"+¹ arctan n C. f. Ex-1(-1)" sin (7) n=1 n=1n(n² +1) 8. Determine the convergence or divergence of the series. If the series converges, does it converge absolutely or conditionally? h. i. 1 j. k. n=0 n=4 i. 1 1 n+1 n+2, 3 n=1 n(n+3) 1.00 n=1 k. Zk=1 m. Σ=1 n 1 n. 1 sin / 100 (-1)"+¹ In(n+1) n+1 n=1 j. Ŝ (-1)"+¹ √n n=1 n+2 (2k-1) (k²-1) (k+1)(k²+4) e1/n n=2 1. Ž (-1)" Inn COSNT n=0 n+1 m. E-1(-1)-12/n 00 n. Ln=1 (-1)^nn n!
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Need help with Number 7 A to F if possible but if you can do A TO D too that's fine.
Expert Solution
Step 1
Step by step
Solved in 3 steps with 3 images
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,