College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
At what temperature would the rms speed of helium atoms equal (a) the escape speed from Earth, 1.12 × 104 m/s and (b) the escape speed from the Moon, 2.37 × 103 m/s? (See Chapter 7 for a discussion of escape speed.) Note: The mass of a helium atom is 6.64 × 10–27 kg.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps with 3 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The temperature of an ideal monatomic gas is increased from 25C to 50C. Does the average translational kinetic energy of each gas atom double? Explain. If your answer is no, what would the final temperature be if the average translational kinetic energy was doubled?arrow_forwardThe mean free path is the average distance traveled by a particle between collisions with other particles. Calculate the mean free path of air at room temperature, T = 67.0 °F. Air is mostly nitrogen, so assume that the collisions are between moving N₂ molecules. The diameter of N₂ is d = 1.87 × 10−¹0 m and the gas is at atmospheric pressure, P = 101325 Pa. λ = marrow_forwardA krypton-84 atom has a mass of 1.39 x 10-25 kg. (a) What temperature (in K) would a gas composed entirely of krypton-84 atoms have to be at in order for the rms speed of the atoms to equal the escape speed from Earth, 1.12 x 10 m/s? K (b) What temperature (in K) would a gas composed entirely of krypton-84 atoms have to be at in order for the rms speed of the atoms to equal the escape speed from the Moon, 2.37 x 10 m/s? Karrow_forward
- An argon-40 atom has a mass of 6.64 ✕ 10−26 kg. (a) What temperature (in K) would a gas composed entirely of argon-40 atoms have to be at in order for the rms speed of the atoms to equal the escape speed from Earth, 1.12 ✕ 104 m/s? K (b) What temperature (in K) would a gas composed entirely of argon-40 atoms have to be at in order for the rms speed of the atoms to equal the escape speed from the Moon, 2.37 ✕ 103 m/s? Karrow_forwardThe rms speed of the molecules in 1.2 g of hydrogen gas is 1800 m/s. Part A What is the total translational kinetic energy of the gas molecules? Express your answer with the appropriate units. Etotal = 1.9 kJ Submit ✓ Correct Part B Previous Answers What is the thermal energy of the gas? Express your answer with the appropriate units. Eth = 1944 Submit μA Previous Answers Request Answerarrow_forwardConsider nitrogen gas in a container at temperature T= 225 K. A molecule's average kinetic energy is Kayg = kRT. Calculate the momentum magnitude p of a nitrogen molecule having this kinetic energy. The momentum magnitude p of the nitrogen molecule is kg · m/s . aw MacBook Pro G Search or type URL @ # $ % & 2 3 4 5 7 8. W E Y D F G J K C V M Barrow_forward
- A research group recently made an interesting discovery, while studying laser interactions with molecular gases. They found that nitrous oxide molecules (mass 44.013 g per mole) can reach temperatures exceeding 1,648 degrees Celsius after a interacting with a few closely-spaced (in time) laser pulses. At this temperature, what is the rms speed (in m/s) of a nitrous oxide molecule?arrow_forwardAt what temperature would the rms speed of hydrogen atoms equal the following speeds? (Note: The mass of a hydrogen atom is 1.66 x 10-27 kg.) (a) the escape speed from Earth, 1.12 x 104 m/s K (b) the escape speed from the Moon, 2.37 x 10³ m/s Karrow_forwardWhat is the RMS speed of Helium atoms when the temperature of the Helium gas is 312.0 K? (Possibly useful 1.66x10-27 kg, Boltzmann's constants: the atomic mass of Helium is 4.00 AMU, the Atomic Mass Unit is: 1 AMU constant is: kg = 1.38×10-23 J/K.) kB Submit Answer Tries 0/12 What would be the RMS speed, if the temperature of the Helium gas was doubled? Submit Answer Tries 0/12 =arrow_forward
- The temperature near the surface of the earth is 309 K. A xenon atom (atomic mass = 131.29 u) has a kinetic energy equal to the average translational kinetic energy and is moving straight up. If the atom does not collide with any other atoms or molecules, then how high up would it go before coming to rest? Assume that the acceleration due to gravity is constant during the ascent.arrow_forwardConsider nitrogen gas in a container at temperature T = 245 K. A molecule’s average kinetic energy is Kavg=32kBT. Calculate the momentum magnitude p of a nitrogen molecule having this kinetic energy. The momentum magnitude p of the nitrogen molecule is _____ kg⋅m/skg⋅m/s.arrow_forwardDr. Chini's research group recently made an interesting discovery, while studying laser interactions with molecular gases. They found that nitrous oxide molecules (mass 44.013 g per mole) can reach temperatures exceeding 745 degrees Celsius after a interacting with a few closely-spaced (in time) laser pulses. At this temperature, what is the rms speed (in m/s) of a nitrous oxide molecule?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON