Calculus: Early Transcendentals
8th Edition
ISBN: 9781285741550
Author: James Stewart
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
At a time denoted as
t = 0
a technological innovation is introduced into a community that has a fixed population of n people. Determine a differential equation for the number of people x(t) who have adopted the innovation at time t if it is assumed that the rate at which the innovations spread through the community is jointly proportional to the number of people who have adopted it and the number of people who have not adopted it. (Use
k > 0
for the constant of proportionality and x for
x(t).
Assume that initially one person adopts the innovation.)
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- One method of slowing the growth of an insect population without using pesticides is to introduce into the population a number of sterile males that mate with fertile females but produce no offspring. Let P represent the number of female insects in a population and S the number of sterile males introduced each generation. Let r be the per capita rate of production of females by females, provided that their chosen mate is not sterile. Then the female population is related to time t by t = ∫(P + S)dP/P[(r-1)P - S] Suppose an insect population with 10,000 females grows at a rate of r = 1.2 and 900 sterile males are added initially. Evaluate the integral to give an equation relating the female population to time. (Note that the resulting equation cannot be solved explicitly for P.)arrow_forwardOn a monthly basis, when a factory employs L worker-hours of labor, they can produce Q(L) = 7L + 40L/6 scooters. An investment in labor of K dollars gives them an employment level of L(K)=0.055K – 12,500 K worker-hours. The factory currently invests 2,000 dollars in labor. At what rate is the number of scooters being produced changing with respect to the amount they invest in labor? Round your final answer to 2 decimal places and include units with your answer. а.arrow_forward
Recommended textbooks for you
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning
Calculus: Early Transcendentals
Calculus
ISBN:9781285741550
Author:James Stewart
Publisher:Cengage Learning
Thomas' Calculus (14th Edition)
Calculus
ISBN:9780134438986
Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:9780134763644
Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:PEARSON
Calculus: Early Transcendentals
Calculus
ISBN:9781319050740
Author:Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:W. H. Freeman
Calculus: Early Transcendental Functions
Calculus
ISBN:9781337552516
Author:Ron Larson, Bruce H. Edwards
Publisher:Cengage Learning