Chemistry
10th Edition
ISBN: 9781305957404
Author: Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
At a certain temperature, the reaction:
PCl5(g) ⇆ PCl3(g) + Cl2(g)
has an equilibrium constant Kc = 6.7E-6. Calculate the equilibrium concentration of PCl3 if only PCl5 is present initially at a concentration of 0.30 M. Your answer should have two significant figures.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 1 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Initial (M) Change (M) Equilibrium (M) Consider the reaction of SO₂ and O₂ described by the chemical reaction below. Determine the equilibrium constant for this reaction by constructing an ICE table, writing the equilibrium constant expression, and solving it. Complete Parts 1-2 before submitting your answer. 2 SO₂(g) + O₂(g) = 2 SO₂(g) NEXT A 2.00 L reaction vessel was filled 0.0432 mol SO₂ and 0.0296 mol O₂ at 900 K and allowed to react. At equilibrium, the concentration of SO, was found to be 0.0175 M. Fill in the ICE table with the appropriate value for each involved species to determine concentrations of all reactants and products. -0.00875 0.0209 0 0.00875 2SO₂(g) Question 20 of 33 2.00 0.0216 0.0432 0.0148 0.0296 0.0041 O₂(g) 0.0175 2 0.0129 -0.0175 0.0061 RESET -0.0350 0.0257 2SO₂(g)arrow_forwardA gaseous mixture contains 0.27 mol CO, 0.12 mol H2, and 0.022 mol H,O, plus an unknown amount of CH4, in each liter. This mixture is at equilibrium at a certain temperature. CO(9) + 3H, (9) = CH4 (9) + H,O(9) What is the concentration of CH4 in this mixture? The equilibrium constant K, equals 3.99.arrow_forwardAt a certain temperature, the reaction: PCl5(g) ⇆ PCl3(g) + Cl2(g) has an equilibrium constant Kc = 6.7E-6. Calculate the equilibrium concentration of PCl3 if only PCl5 is present initially at a concentration of 0.30 M. Your answer should have two significant figures.arrow_forward
- Keq from Equilibrium Composition, Variously Expressed. At some temperature, an equilibrium mixture, in a 1.00-L container, involving the chemical system PCI5(g) = PCI3(g) + Cl2(g) is found to contain 5.74x1020 molecules of PCI5, 0.00921 mol of PCI3, and 0.228 g of Cl2. Calculate the equilibrium constant (Keg expressed in terms of the molar concentrations) at this temperature. (No units required.)arrow_forwardA chemist is studying the following equilibirum, which has the given equilibrium constant at a certain temperature: -6 N,(g) + 3 H,(g) 2 NH3(g) K = 1. × 10 He fills a reaction vessel at this temperature with 10. atm of nitrogen gas and 3.9 atm of hydrogen gas. Use this data to answer the questions in the table below. Can you predict the equilibrium pressure of NH3, using only the yes tools available to you within ALEKS? no ? If you said yes, then enter the equilibrium pressure of NH, at right. atm Round your answer to 1 significant digit.arrow_forwardSuppose a 250. mL flask is filled with 0.30 mol of NO and 0.80 mol of NO2. The following reaction becomes possible: NO3(g)+NO(g)<->2NO2(g) The equilibrium constant K for this reaction is 0.717 at the temperature of the flask. Calculate the equilibrium molarity of NO2. Round your answer to two decimal places.arrow_forward
- Suppose a 500. mL flask is filled with 1.4 mol of N, and 1.3 mol of NO. This reaction becomes possible: N,(2) +0,(2)- -2NO(g) Complete the table below, so that it lists the initial molarity of each compound, the change in molarity of each compound due to the reaction, and the equilibrium molarity of each compound after the reaction has come to equilibrium. Use x to stand for the unknown change in the molarity of N,. You can leave out the M symbol for molarity. N2 O2 NO initial change equilibrium oloarrow_forwardConsider the equilibrium system described by the chemical reaction below. Determine the concentration of O, at equilibrium by writing the equilibrium constant expression and solving it. Complete Parts 1-2 before submitting your answer. = 2 H₂O(g) 2 H2(g) + O̟₂(g) 1 2 NEXT At this temperature, the Kc = 2.4 × 103 and the equilibrium concentrations of H2O and H2 are 0.11 M and 0.019 M, respectively. If [x] represents the equilibrium concentration of O2, set up the equilibrium expression for Kc to solve for the concentration. Each reaction participant must be represented by one tile. Do not combine terms. Кс = 2' = 2.4 × 103 > RESET [0.11] [0.019] 2[0.11] 2[0.019] [0.11]² [0.019]² [x] [x]² [2x] [2x]²arrow_forwardA mixture of 0.100 mol of SO2 and 0.100 mol of O2 is placed in a reaction container and allowed to react until equilibrium is established. 2 SO2 (g) + O2 (g) ⥂ 2 SO3 (g) At equilibrium, 0.0916 mol of SO3 is present. a.) What is the composition of the equilibrium mixture in terms of moles of each substance present? (Hint: Stoichiometry!) b.) If the container size is 3.0 L, what is the value of the equilibrium constant?arrow_forward
- Suppose a 500. mL flask is filled with 0.60 mol of CO, 0.30 mol of NO and 1.7 mol of CO,. The following reaction becomes possible: NO,(9) + CO(2) = No(g) + CO,(g) The equilibrium constant K for this reaction is 0.953 at the temperature of the flask. Calculate the equilibrium molarity of NO. Round your answer to two decimal places. 0.37 M ?arrow_forwardO KINETICS AND EQUILIBRIUM Calculating equilibrium composition from an equilibrium constant Suppose a 250. mL flask is filled with 1.8 mol of NO3 and 1.1 mol of NO2. The following reaction becomes possible: NO₂(g) + NO(g) + 2NO₂(g) The equilibrium constant K for this reaction is 0.707 at the temperature of the flask. Calculate the equilibrium molarity of NO3. Round your answer to two decimal places. M × S 1/5arrow_forwardCO2(g) + H2(g) « H2O(g) + CO(g) When H2(g) is mixed with CO2(g) at 2,000 K, equilibrium is achieved according to the equation above. In one experiment, the following equilibrium concentrations were measured. [H2] = 0.20 mol/L [CO2] = 0.30 mol/L [H2O] = [CO] = 0.55 mol/L (a) What is the mole fraction of CO(g) in the equilibrium mixture? (b) Using the equilibrium concentrations given above, calculate the value of Kc, the equilibrium constant for the reaction. (c) Determine Kp in terms of Kc for this system. (d) When the system is cooled from 2,000 K to a lower temperature, 30.0 percent of the CO(g) is converted back to CO2(g). Calculate the value of Kc at this lower temperature. (e) In a different experiment, 0.50 mole of H2(g) is mixed with 0.50 mole of CO2(g) in a 3.0-liter reaction vessel at 2,000 K. Calculate the equilibrium concentration, in moles per liter, of CO(g) at this…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY