Question
As shown in the figure below, two blocks (m1 and m2) are each released from rest at a height of h = 3.53 m on a frictionless track and when they meet on the horizontal section of the track they undergo an elastic collision. If m1 = 2.50 kg and m2 = 4.15 kg,determine the maximum heights (in m) to which they rise after the collision. Use the coordinate system shown in the figure.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps with 3 images
Knowledge Booster
Similar questions
- A 10.0-g marble slides to the left with a velocity of magnitude 0.400 m/s on the frictionless, horizontal surface of an icy New York sidewalk and has a head-on, elastic collision with a larger 30.0-g marble sliding to the right with a velocity of magnitude 0.200 m/s. Find the velocity of each marble (magnitude and direction) after the collision. (Since the collision is head-on, all the motion is along a line.) (b) Calculate the change in momentum (that is, the momentum after the collision minus the momentum before the collision) for each marble.arrow_forwardA billiard ball is moving in the x-direction at 30.0 cm/s and strikes another billiard ball moving in the y-direction at 40.0 cm/s. As a result of the collision, the first ball moves at 50.0 cm/s, and the second ball stops. What is the change in kinetic energy of the system as a result of the collision?arrow_forwardTwo objects are on a collision course. Object #1 has a mass of 13.4 kg and an initial velocity of 12.3 m/s i. Object #2 has a mass of 7.53 kg and an initial velocity of -3.69 m/s i. If the system is isolated and the objects stick together upon colliding, what amount of energy is lost in the collision? Assume that all quantities are good to 3 significant figures, All numeric answers should be entered rounded to 3 significant figure.arrow_forward
- A truck of mass 1.5x10^4 kg travelling at 85 km/h [S] collides with a car of mass 1.2x10^3 kg travelling at 30 km/h [S]. The collision is perfectly inelastic. a) Calculate the magnitude and direction of the velocity of the vehicles immediately after the collision. b) Determine the decrease in kinetic energy during the collisionarrow_forwardA 2.0-g particle moving at 5.8 m/s makes a perfectly elastic head-on collision with a resting 1.0-g object. (a) Find the speed of each particle after the collision. 2.0 g particle 1.93 m/s 1.0 g particle 3.86 X m/s (b) Find the speed of each particle after the collision if the stationary particle has a mass of 10 g. 2.0 g particle 1.9 X m/s m/s 10.0 g particle (c) Find the final kinetic energy of the incident 2.0-g particle in the situations described in parts (a) and (b). KE in part (a) J KE in part (b) In which case does the incident particle lose more kinetic energy? case (a) case (b)arrow_forwardA billiard ball traveling at 5.00 m/s collides with an identical billiard ball initially at rest on the level table. The initially moving billiard ball (A) deflects 60° from its original direction while the other ball, which was initially at rest, travels 30° from the original direction of A. a)Find the speed of each of the masses A and B after the collision? b) Is the collision elastic or inelastic?arrow_forward
- One object is at rest, and another is moving. The two collide in a one-dimensional, completely inelastic collision. In other words, they stick together after the collision and move off with a common velocity. Momentum is conserved. The speed of the object that is moving initially is 29 m/s. The masses of the two objects are 2.8 and 8.8 kg. Determine the final speed of the two-object system after the collision for the case (a) when the large-mass object is the one moving initially and the case (b) when the small-mass object is the one moving initially.arrow_forwardTwo billiard balls of identical mass move toward each other as shown in the figure. Assume that the collision between them is perfectly elastic. If the initial velocities of the balls are v1i = +34.3 cm/s and v2i = −20.1 cm/s, what are the velocities of the balls after the collision? Assume friction and rotation are unimportant. (Indicate the direction with the sign of your answer.) v1f = cm/s v2f = cm/sarrow_forwardTwo boxes make a perfectly elastic collision on a horizontal frictionless surface as shown in the figure. Box with mass m= 8.0 kg and speed of 4.50 m/s collides with box M. After the collision, box m recoils with a speed of 0.75 m/s. The boxes are in contact for 0.30 s. The magnitude of the average force on the 8.0 kg box, while the two blocks are in contact, isarrow_forward
- A 0.250 kg toy car moving with a speed of 0.820 m/s collides with a wall. The figure shows the force exerted on the car by the wall over the course of the collision. What is the magnitude of the velocity, or final speed, of the car after the collision?arrow_forwardStarting with an initial speed of 5.00 m/s at a height of 0.357 m, a 2.82-kg ball swings downward and strikes a 4.70-kg ball that is at rest, as the drawing shows. (a) Using the principle of conservation of mechanical energy, find the speed of the 2.82-kg ball just before impact. (b) Assuming that the collision is elastic, find the velocity (magnitude and direction) of the 2.82-kg ball just after the collision. (c) Assuming that the collision is elastic, find the velocity (magnitude and direction) of the 4.70-kg ball just after the collision. (d) How high does the 2.82-kg ball swing after the collision, ignoring air resistance? (e) How high does the 4.70-kg ball swing after the collision, ignoring air resistance? (a) Number (b) Number (c) Number Mi i MI Units Units Unitsarrow_forwardA 4.0 kg ball moving to the right at 5.0 m/s collides head-on with a stationary 2.0 kg. If the collision is elastic, determine the direction and speed of each ball after the collision.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios