Elements Of Electromagnetics
7th Edition
ISBN: 9780190698614
Author: Sadiku, Matthew N. O.
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Question
Argon gas flows through a well-insulated nozzle at steady state. The temperature and velocity at the inlet are 530oR and 150 ft/s, respectively. At the exit, the temperature is 440oR and the pressure is 40 lbf/in2. The area of the exit is 0.0085 ft2. Use the ideal gas model with k = 1.67, and neglect potential energy effects.
Determine the velocity at the exit, in ft/s, and the mass flow rate, in lb/s.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Similar questions
- If steam flows through a nozzle at steady-state, entering the nozzle with a pressure of 0.5 MPa and a temperature of 673 K, where H = 3272 kJ/kg, and exiting at 0.1 MPa and 623 K, where H = 3176 kJ/kg, what is its exiting velocity (in m/s)? Assume that the heat loss is 10% of the change in kinetic energy.arrow_forwardSteam enters a turbine operating at steady state at 850oF and 450 lbf/in2 and leaves as a saturated vapor at 1.4 lbf/in2. The turbine develops 12,000 hp, and heat transfer from the turbine to the surroundings occurs at a rate of 2 x 106 Btu/h. Neglect kinetic and potential energy changes from inlet to exit. Determine the exit temperature, in oF, and the volumetric flow rate of the steam at the inlet, in ft3/s.arrow_forwardArgon gas flows through a well-insulated nozzle at steady state. The temperature and velocity at the inlet are 550°R and 150 ft/s, respectively. At the exit, the temperature is 460°R and the pressure is 40 Ibf/in?. The area of the exit is 0.0085 ft?. Use the ideal gas model with k = 1.67, and neglect potential energy effects. Determine the velocity at the exit, in ft/s, and the mass flow rate, in Ib/s.arrow_forward
- Refrigerant 134a enters an insulated diffuser as a saturated vapor at 80°F with a velocity of 1400 ft/s. The inlet area is 1.4 in². At the exit, the pressure is 400 lb/in² and the velocity is negligible. The diffuser operates at steady state and potential energy effects can be eglected. Determine the mass flow rate, in lb/s, and the exit temperature, in °F. Step 1 Your answer is correct. Determine the mass flow rate, in lb/s. m = 28.887 Hint Step 2 lb/s. Determine the exit temperature, in °F. T₂ = i OF Attempts: 1 of 4 usedarrow_forwardA flange coupling has 6 bolts with a bolt circle diameter of 200 mm is used to connect the steam turbine to a 5 MW generator running at 3,600 rpm with an efficiency of 95 %. Find the force on each bolt that will cause it to shear. A. 23.27 kN B. 32.72 kN C. 27.53 kN D. 35.94 kNarrow_forwardA steam turbine operates with an inlet condition of 30 bar, 400 °C, 160 m/s and an outlet state of a saturated vapour at 0.7 bar with a velocity of 100 m/s. The mass flow rate is 1200 kg/min and the power output is 10800 kW. Present the process on the T-v diagram. Determine the magnitude and direction of the heat-transfer rate in kJ/min if the potential energy change in negligible.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY