Elements Of Electromagnetics
7th Edition
ISBN: 9780190698614
Author: Sadiku, Matthew N. O.
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
thumb_up100%
Approximate the theoretical power in wind moving at a speed of 6 m/s with an air temperature of 40°F striking wind turbine with a 5 ft diameter rotor (use mass density = 1.277 kg/m3).
a.2,707.97 W
b.75.22 W
c.251.57 W
d.None of these
e.6.99 W
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- B) The air flow to a four cylinder four-stroke engine is 2.15 m³/min. During a test on the engine the following data were recorded: Bore 10.5cm; stroke 12.5cm; engine speed 1200 rpm, torque 150 N.m, fuel consumption 5.5 kg/hr, calorific value of fuel, 43124 kJ/kg, ambient temperature 1-The brake thermal efficiency. and pressure are 20°C and 1.03 barş. Calculate: 2-The brakes mean effective pressure. 3-The volumetric efficiency.arrow_forwardA large windmill design has a swept area of 1600m2. Assuming it operates at 100% of thetheoretical maximum for windmills, calculate its expected power :i) on Ovenden moor with a wind speed of 11m/s (average)ii) in Buckinghamshire with a wind speed of 3m/s (average)arrow_forwardSend the correct answer. If diagram required please send with that. Thanks.arrow_forward
- explanation of the performance tests undertaken for a wind turbine. With the options found, give a justified recommendation for the best system.arrow_forwardOO O0I 94) 8:50 EXAMPLE Given: A sports car has a mass of 2 Mg and an engine efficiency of ɛ = 0.65. Moving forward, the wind creates a drag resistance on the car of F, = 1.2v2 N, where v is the velocity in m/s. The car accelerates at 5 m/s?, starting from rest. Find: The engine's input power when t = 4 s. Plan: 1) Draw a free body diagram of the car. 2) Apply the equation of motion and kinematic equations to find the car's velocity at t = 4 s. 3) Determine the power required for this motion. 4) Use the engine's efficiency to determine input power. nashat N •..arrow_forwardA wind generator rotates at 17 rpm on the rotor (the part with the blades). It is a direct drive (meaning the rotor connects directly to the generator). The generator is 86% efficient and produces 3.1 MW. What is the torque on the rotor?arrow_forward
- P1arrow_forwardQuestion B3 The engine of an aeroplane is equipped with an ideal convergent nozzle with an area ratio Ainlet 2.035 ( -A-2.035), as in Figure Q-B3. The aeroplane is flying at an altitude of 11 Aexit km where the atmospheric pressure and temperature are 0.23 bar and 216K respectively. You may assume the combustion gases entering the nozzle have the same property as air (i.e. y=1.40, R=287 J/kgK and Cp-1004.5J/kgK). Page 6 Question B3 continued inlet exit Amles/Aexit -AVAJ-2.035 Figure Q-B3 a) If the nozzle operates at its critical condition, calculate: the inlet Mach number M;. nozzle's exit velocity V, the inlet stagnation pressure Por- the inlet static pressure FG The stagnation Aj P, and the nozzle's gross thrust per unit exit area temperature of the gases entering the nozzle is To 1200 K. b) If the stagnation pressure at the inlet of the nozzle is reduced to 80% of its value in part (a), determine the exit static temperature 7;, the nozzle's gross thrust per unit exit area FG. The…arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY