Apply the translation theorem to find the inverse Laplace transform of the following function. 6s+9 F(s) = S²-8s +41 L-' {F(s)} = t Table of Laplace transforms f(t)=¹(F(s)} L{f(t)} = F(s) f(t)=¹(F(s)) L{f(t)} = F(s) (s> 0) cos kt (s>0) sin kt 2 TETE n! (s> 0) cosh kt (s> |k|) s²-4² г(а+1) (s> 0) sinh kt (s>a) tª 1 S 1 n+1 1 s-a s²+k² k S k s²-K² (please enter an expression + as the variable) using n! (s-a)+1 (s>0) (s > 0) (s> |kl) (s>a)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Apply the translation theorem to find the
inverse Laplace transform of the following function.
F(s)=-
6s+9
S²-8s +41
L₁' {F(s)} =
t
Table of Laplace transforms
f(t)=¹(F(s)} L{f(t)} = F(s) f(t)=1¹(F(s)} L{f(t)}=F(s)
(s> 0)
cos kt
(s> 0)
sin kt
²
s²+k²
TETE
n!
(s> 0)
cosh kt
s²-k²
г(а+1)
(s> 0)
sinh kt
(s>a)
1
S
1
n+1
1
s-a
s²+k²
k
S
k
s²-k²
(please enter an expression
+ as the variable)
using
n!
(s-a)n+1
(s>0)
(s > 0)
(s> |k|)
(s> |k|)
(s>a)
Transcribed Image Text:Apply the translation theorem to find the inverse Laplace transform of the following function. F(s)=- 6s+9 S²-8s +41 L₁' {F(s)} = t Table of Laplace transforms f(t)=¹(F(s)} L{f(t)} = F(s) f(t)=1¹(F(s)} L{f(t)}=F(s) (s> 0) cos kt (s> 0) sin kt ² s²+k² TETE n! (s> 0) cosh kt s²-k² г(а+1) (s> 0) sinh kt (s>a) 1 S 1 n+1 1 s-a s²+k² k S k s²-k² (please enter an expression + as the variable) using n! (s-a)n+1 (s>0) (s > 0) (s> |k|) (s> |k|) (s>a)
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,