
College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question

Transcribed Image Text:Answer the following.
(a) Write out the electronic configuration of the ground state for boron(Z = 5).
1s25 2p1
O 13252p2
O 1:252p3
O 15232p4
O 132,2,5
O 13232,6
(b) Write out the values for the set of quantum numbers n, l, m, and m. for each of the electrons in boron. (In cases where there are more than one value, enter the positive value first. Enter positive values without a '+' sign in
front of them. Include all possible values.)
m.=
1s states n = 1
e = 0
m, = 0
m. =
X Your answer must be a fraction, integer, or exact decimal.
m
=
25 states
n = 2
l = 0
m,- 0
X Your answer must be a fraction, integer, or exact decimal.
m, =
= |-1
m. =
|x Your answer must be a fraction, integer, or exact decimal.
ms =
2p states n = 2
v m, - 0
X Your answer must be a fraction, integer, or exact decimal.
m. =
= +1
X Your answer must be a fraction, integer, or exact decimal.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps with 2 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Show by direct substitution that the wave function corresponding to n = 1, l = 0, ml = 0 is a solution of the attached equation corresponding to the ground-state energy of hydrogen.arrow_forwardThe electron in a hydrogen atom undergoes a transition from the n=3 energy state to the ground state, n= 1. How much energy, in eV, will be given off by the electron? Use three significant figures. Note that, for hydrogen, at n=1. En=1=-13.6 eVarrow_forwardCan you solve only Barrow_forward
- I need help with the last 3.arrow_forwardProblem 3: Calculate the energy changes corresponding to the transitions of the hydrogen atom. Give all your answers in eV. Part (a) From n = 3 to n = 4. Part (b) From n = 2 to n = 1. Part (c) From n = 3 to n = ∞.arrow_forwardIf we neglect interaction between electrons, the ground state energy of the helium atom is E =2 z2((- e2)/(2ao)) = -108.848eV (Z=2). The true (measured) value is – 79.006eV.Calculate the interaction energy e2/r12 supposing that both electrons are in the 1s state and r12 that the spin wave function is anti-symmetric. What E is the ground state energy?arrow_forward
- Compute and compare the electrostatic and gravitational forces in the classical hydrogen atom, assuming a radius 5.3 x 10-11 m.arrow_forwardAn electron in a hydrogen atom is approximated by a one-dimensional infinite square well potential. The normalised wavefunction of an electron in a stationary state is defined as *(x) = √√ sin (""). L where n is the principal quantum number and L is the width of the potential. The width of the potential is L = 1 x 10-¹0 m. (a) Explain the meaning of the term normalised wavefunction and why normalisation is important. (b) Use the wavefunction defined above with n = 2 to determine the probability that an electron in the first excited state will be found in the range between x = 0 and x = 1 × 10-¹¹ m. Use an appropriate trigonometric identity to simplify your calculation. (c) Use the time-independent Schrödinger Equation and the wavefunction defined above to find the energies of the first two stationary states. You may assume that the electron is trapped in a potential defined as V(x) = 0 for 0≤x≤L ∞ for elsewhere.arrow_forwardExplain each steparrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley

College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON