Elements Of Electromagnetics
7th Edition
ISBN: 9780190698614
Author: Sadiku, Matthew N. O.
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Question
Answer correctly.
Here is the Translation.
"A luxury sports car has an area of 2 m² and there is a drag coefficient of 0.29 at a speed of 90 km/h. Calculate the drag force exerted on the car at this speed"
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 3 steps with 3 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- You are designing an airfoil for a new hobby RC plane. Because of your limited knowledge, you have mistakenly approximated your airfoil as an ellipse with a = 75mm and b = 12mm. Here, “a” is the depth of your wing and “b” is the thickness. Your plane travels through the air at approximately 20mph (8.9m/s). As it does so, skin friction produces a drag-induced heat of 800W on your wind, of length 1m. Properties of Air: k = 0.025 W/mK, Pr = 0.72, v = 1.847 x 10−5, u = 16.84 x 10−6, p = 1.2 kg/m3, B = 1/Tf (ideal gas), TInfinity = 25oC a) What is the average temperature of your wing? Assume an ellipse perimeter of approximately 200mm.arrow_forward. The net drag of a moving body is produced by both pressure and shear stress effects. In most instance these two effects are considered together and an overall drag coefficient CD, defined as CD = D/(1/2 rU2A)。The drag coefficient depend on what physical effects or dimensionless numberarrow_forwardA pitcher throws a baseball without spin with a velocity of 20 m/s. If the ball has a circumference of 225 mm, calcu- late the drag force on the ball in air at 30°C.arrow_forward
- Note: Don't copy from other websites solution, those are wrong solutions. The trailer travels at U = 39 mi/h. The air is still and has a temperature of 60°F. Assume the surfaces are smooth and flat Consider both laminar and turbulent boundary layers. (Figure 1) Part A :Determine the drag acting on each side of the trailer truck.arrow_forwardAn aeroplane has a rectangular planform wing with a span of 12 m and a chord of 2 m. The aircraft is flying at cruising speed of 62 m/s at an altitude of 3,200 m. Assume that the skin-friction drag on the wing can be approximated by the drag on a flat plate of the same dimensions at 0° incidence. Calculate the skin-friction drag and the maximum boundary layer thickness assuming (i) a completely laminar flow, and (ii) a completely turbulent flow. Assume μ = 1.63.10-5 N s/m², p = 0.89 kg/m³. Then, calculate the skin-friction drag accounting for transition at Recr= 5.105. What would the drag benefit be if transition was delayed to a Reynolds number of 106? What reduction in a propeller engine power would this imply in the cruise condition, assuming a propeller efficiency of 0.88?arrow_forwardand power for part barrow_forward
- Help me with correct answer.arrow_forwardAn aircraft has the drag polar, C_d=0.015+0.05C_l^2 For a lift coefficient of 0.5, find the value of the drag coefficient and lift drag ratio? I am asking It For Second Time. Please Read the Question Carefully.arrow_forwardA stationary object in a flow of speed 27 m/s produces a drag force of 13 N. The flow speed is then changed to 25 m/s. What will be the drag force if the Drag Coefficient and density are assumed constant? Give your answer in Newtons to 2 decimal places.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY