
Calculus: Early Transcendentals
8th Edition
ISBN: 9781285741550
Author: James Stewart
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
1 and 5
![**Section 12.7 Higher-Order Derivatives**
### Explanation
The page is from a calculus textbook, focusing on higher-order derivatives. It includes a worked-out example, followed by practice problems.
**Worked Example**
The text demonstrates the process of finding higher-order derivatives of a given implicit function \(2y = e^{xy}\).
- Start with the original equation: \(y^3 = e^{3y}\).
- Differentiate implicitly to find \(\frac{dy}{dx}\).
- Apply the chain rule and solve for \(\frac{d^2y}{dx^2}\).
- Express the final result without \(\frac{dy}{dx}\).
Final expression:
\[
\frac{d^2y}{dx^2} = \frac{2\left(\frac{y - e^y}{2}\right)}{(2 - y)^2} \cdot \frac{2y}{2 - y}
\]
### Practice Problems 12.7
**Problems 1-20: Find the Indicated Derivatives**
1. \(y = 4x^4 - 12x^2 + (x + 2), y'\)
2. \(y = x^4 - x^3 + x^2 + x + 1, y'\)
3. \(y = x^5 + x^4 + x, y'\)
4. \(y = \sin(q + \ln q), \frac{dq}{d\theta}\)
5. \(y = x^2 + 3 \cdot \frac{d^2x}{dx^2}\)
6. \(F(g) = \ln(q + t), \frac{dF}{dg}\)
7. \(f(s) = 3 \ln t, y''\)
8. \(y = \frac{1}{x}, y''\)
9. \(f(g) = \ln \left(2q \cos q\right)\)
10. \(f(x) = \sqrt{x} \cdot f''(x)\)
11. \(f(q) = \sqrt{r} \cdot f'(r)\)
12. \(y = e^{x^2}, y''\)
13. \(y = \frac{2x + 3}{x^4}\)
14. \(y = (3x +](https://content.bartleby.com/qna-images/question/0e2d6f28-e3d7-414c-b1d4-a752131175c2/82cfab03-b4f2-4799-9d2e-b218a0ad8d2e/18i1eja.jpeg)
Transcribed Image Text:**Section 12.7 Higher-Order Derivatives**
### Explanation
The page is from a calculus textbook, focusing on higher-order derivatives. It includes a worked-out example, followed by practice problems.
**Worked Example**
The text demonstrates the process of finding higher-order derivatives of a given implicit function \(2y = e^{xy}\).
- Start with the original equation: \(y^3 = e^{3y}\).
- Differentiate implicitly to find \(\frac{dy}{dx}\).
- Apply the chain rule and solve for \(\frac{d^2y}{dx^2}\).
- Express the final result without \(\frac{dy}{dx}\).
Final expression:
\[
\frac{d^2y}{dx^2} = \frac{2\left(\frac{y - e^y}{2}\right)}{(2 - y)^2} \cdot \frac{2y}{2 - y}
\]
### Practice Problems 12.7
**Problems 1-20: Find the Indicated Derivatives**
1. \(y = 4x^4 - 12x^2 + (x + 2), y'\)
2. \(y = x^4 - x^3 + x^2 + x + 1, y'\)
3. \(y = x^5 + x^4 + x, y'\)
4. \(y = \sin(q + \ln q), \frac{dq}{d\theta}\)
5. \(y = x^2 + 3 \cdot \frac{d^2x}{dx^2}\)
6. \(F(g) = \ln(q + t), \frac{dF}{dg}\)
7. \(f(s) = 3 \ln t, y''\)
8. \(y = \frac{1}{x}, y''\)
9. \(f(g) = \ln \left(2q \cos q\right)\)
10. \(f(x) = \sqrt{x} \cdot f''(x)\)
11. \(f(q) = \sqrt{r} \cdot f'(r)\)
12. \(y = e^{x^2}, y''\)
13. \(y = \frac{2x + 3}{x^4}\)
14. \(y = (3x +
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps with 2 images

Knowledge Booster
Similar questions
- Question 7 of 9 A fence installation company sells 4 models of chain-link fencing, 2 models of wood fencing, and 3 models of iron fencing. What is the total number of models of fencing that the company sells? 24 9 6 11arrow_forward4- 3 2- 10 20 30 5.arrow_forward#8, 3, if i cant get help with all of it could i get help with a couple of itarrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning

Calculus: Early Transcendentals
Calculus
ISBN:9781285741550
Author:James Stewart
Publisher:Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:9780134438986
Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:9780134763644
Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:9781319050740
Author:Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:W. H. Freeman


Calculus: Early Transcendental Functions
Calculus
ISBN:9781337552516
Author:Ron Larson, Bruce H. Edwards
Publisher:Cengage Learning