Elements Of Electromagnetics
7th Edition
ISBN: 9780190698614
Author: Sadiku, Matthew N. O.
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Question
An oil (viscosity 1 Pa.s, density 800kg/m3) is flowing in an axisymmetric pipe. The flow is fully developed and laminar and the velocity at the centre of the pipe is = 30cm/s. The velocity cross-sectional profile is parabolic as:
u(r) = U0(1- r2/R2)
. Here r is the distance of the point to the pipe centre where the velocity is u(r). . R is radius of pipe (R=4mm).
Calculate:
- the shear stress at the pipe wall
- the shear stress within the fluid 2 mm from the pipe wall
- the Reynold’s number of the flow
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- SAE-10 oil at 20 deg C fills the gap between the moving 6 cm diameter long cylinder which is inside a fixed outer cylinder 6.8 cm diameter. Calculate the pressure gradient per unit length needed so the shear stress on the outer cylinder is exactly equal to zero when the inner cylinder is moving with velocity V=4 m/s in the negative z-direction. Assume laminar flow. The viscosity of the oil is 99.2 cp. Express your result in kPa/m and round your numerical answer to a whole numberarrow_forwardWater flows through the following circular pipe with a diameter of 30 mm at a speed of 3 m/s, what is the hydrodynamic entry length? The water dynamic viscosity is 1.002×10-3kg/(m⋅s).arrow_forwardIn fluid mechanicsarrow_forward
- 8. The A-36 steel wire AB has a cross-sectional area of 10 mm² and is unstretched when 0=45.0°. Determine the applied load P needed to cause 0=44.9°. a. 2.67 b. 2.57 с. 2.37 d. 2.47 400 mm 400 mmarrow_forwardPlease help me in answering the following practice question. Thank you for your help. A Newtonian fluid is flowing in an infinitely long round pipe of diameter M or radius N = M/2 and inclined at angle α with the horizontal line. Consider the flow is steady (dρ/dt=0), in-compressible, and laminar. There is no applied pressure gradient (dP/dz= 0) applied along the pipe length (z-direction). The fluid flows down the pipe due to gravity alone (gravity acts vertically downward). Adopt the coordinate system with z axis along the centre line of the pipe along the pipe length.Derive an expression for the z-component of velocity u as a function of radius N and the other parameters of the problem. The density and viscosity of the fluid are ρ and u, respectively.Please list all necessary assumptions.arrow_forwardPlease help me question 2.6arrow_forward
- A horizontal smooth-walled cylindrical pipe has diameter 0.04 m. Water flows along the pipe with a flow rate of Q 2 x 10-4 m³ s-¹. = For water, take the kinematic viscosity as v = 10-6 m² s¹ and the 10³ kg m-³. density as p = (a) Calculate the Reynolds number and establish whether the flow is turbulent or not. (b) Show that λ = 0.035 is a good approximation of the Darcy friction factor for this flow. (c) Calculate the shear stress at the wall of the pipe, and hence find the magnitude of the drag force exerted by the water on a length 2 m of the pipe. L =arrow_forwardFrom the question he has wrote the given infomation. i dont understand how he has got that from the questionarrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY