An object attached to a spring undergoes simple harmonic motion modeled by the differential equation = m. N/m x (t) d²x dt² + kx where x(t) is the displacement of the mass (relative to equilibrium) at time t, m is the mass of the object, and k is the spring constant. A mass of 18 kilograms stretches the spring 0.1 meters. Use this information to find the spring constant. (Use g 9.8 m/s²) - 0 The previous mass is detached from the spring and a mass of 6 kilograms is attached. This mass is displaced 0.85 meters below equilibrium (above is positive and below is negative) and then launched with an initial velocity of 2 meters/second. Write the equation of motion in the form x (t) = C₁ cos(wt) + C₂ sin(wt). Do not leave unknown constants in your equation. = Rewrite the equation of motion in the form (t) A cos(Bt - 6). Do not leave unknown constants in your equation. Leave as an angle between - and T. x(t) =

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
An object attached to a spring undergoes simple harmonic motion modeled by the
differential equation
k =
x(t)
m
where x(t) is the displacement of the mass (relative to equilibrium) at time t, m is the
mass of the object, and k is the spring constant. A mass of 18 kilograms stretches the
spring 0.1 meters.
=
x (t)
d² x
Use this information to find the spring constant. (Use g
=
N/m
dt²
=
+ kx
=
= 0
The previous mass is detached from the spring and a mass of 6 kilograms is attached.
This mass is displaced 0.85 meters below equilibrium (above is positive and below is
negative) and then launched with an initial velocity of 2 meters/second. Write the
equation of motion in the form (t) = C₁ cos(wt) + C₂ sin(wt). Do not leave unknown
constants in your equation.
9.8 m/s²)
Rewrite the equation of motion in the form x(t) = A cos(Bt - ). Do not leave
unknown constants in your equation. Leave as an angle between - and T.
π
Transcribed Image Text:An object attached to a spring undergoes simple harmonic motion modeled by the differential equation k = x(t) m where x(t) is the displacement of the mass (relative to equilibrium) at time t, m is the mass of the object, and k is the spring constant. A mass of 18 kilograms stretches the spring 0.1 meters. = x (t) d² x Use this information to find the spring constant. (Use g = N/m dt² = + kx = = 0 The previous mass is detached from the spring and a mass of 6 kilograms is attached. This mass is displaced 0.85 meters below equilibrium (above is positive and below is negative) and then launched with an initial velocity of 2 meters/second. Write the equation of motion in the form (t) = C₁ cos(wt) + C₂ sin(wt). Do not leave unknown constants in your equation. 9.8 m/s²) Rewrite the equation of motion in the form x(t) = A cos(Bt - ). Do not leave unknown constants in your equation. Leave as an angle between - and T. π
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 1 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,