College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
An insulated beaker with negligible mass contains liquid water with a mass of 0.240 kg and a temperature of 70.6 ∘C .
How much ice at a temperature of -13.8 ∘C must be dropped into the water so that the final temperature of the system will be 29.0 ∘C ?
Take the specific heat of liquid water to be 4190 J/kg⋅K , the specific heat of ice to be 2100 J/kg⋅K , and the heat of fusion for water to be 3.34×105 J/kg .
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The value of specific heat for copper is 390 J/kg⋅∘C, for aluminum is 900 J/kg⋅∘C, and for water is 4186 J/kg⋅∘C. What will be the equilibrium temperature when a 265 g block of copper at 255 ∘C is placed in a 155 g aluminum calorimeter cup containing 815 g of water at 15.0 ∘C?arrow_forwardYou wish to cool a 1.59 kg block of tin initially at 96.0°C to a temperature of 57.0°C by placing it in a container of kerosene initially at 28.0°C. Determine the volume (in L) of the liquid needed in order to accomplish this task without boiling. The density and specific heat of kerosene are respectively 820 kg/m³ and 2,010 J/(kg °C), and the specific heat of tin is 218 J/(kg °C). L Need Help? Read Itarrow_forwardA 23 g ice cube at -15.0oC is placed in 129 g of water at 48.0oC. The Specific heat of ice is 2.090 J/g K, the specific heat of water is 4.186 J/g K, and the latent heat of fusion for water is 333 J/g. What is final temperature in celsius of the system when the equilibrium is reached. Ignore the heat capacity of the container and assume this is in a calorimeter.arrow_forward
- The initial temperature of 60 g of ice is -200C. The specific heat capacity of ice is 0.5 cal/g.C0 and water’s is 1 cal/g.C0. The latent heat of fusion of water is 80 cal/g. How much heat is required to raise the ice to 00C and completely melt the ice? (b) How much additional heat is required to heat the water (obtained by melting the ice) to 620C?arrow_forwardA heavy pot made of copper has a mass of 2.24 kg (including the lid) and is heated in an oven to a temperature of 154 °C. You pour 0.12 kg of water at 26.0 °C into the pot and quickly close the lid so that no steam can escape. We assume that no heat is lost to the surrounding. For copper, Ccopper 390 J/(kg.K) For water, Cwater 4190 J/(kg.K), L, = 2256 kJ/kg, L; = 333 kJ/kg. %3D What is the final mass of steam in the pot? onarrow_forwardIce at 0 °C is placed in a Styrofoam cup containing 0.62 kg of lemonade at 32 °C. The specific heat capacity of lemonade is virtually the same as that of water; that is, c = 4180 J/(kg C°). After the ice and lemonade reach an equilibrium temperature, some ice still remains. The latent heat of fusion for water is Lf = 3.35 x 105 J/ kg. Assume that the mass of the cup is so small that it absorbs a negligible amount of heat, and ignore any heat lost to the surroundings. Determine the mass of ice that has melted, in grams.arrow_forward
- A rectangular block of aluminum has the following dimensions: 1m x 1m x m. The density of aluminum is 2700kg/m^3. The specific heat of aluminum is 0.9 J/g K. How much does the block of aluminum weigh in Newtons?arrow_forwardIn an insulated vessel, 239 g of ice at 0°C is added to 635 g of water at 15.0°C. (Assume the latent heat of fusion of the water is 3.33 x 10° J/kg and the specific heat is 4,186 J/kg · °C.) (a) What is the final temperature of the system? °C (b) How much ice remains when the system reaches equilibrium?arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON