College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
An ink-jet printer steers charged ink drops vertically. Each drop of ink has a mass of 10-11 kg, and a charge due to 500,000 extra electrons. It goes through two electrodes that gives a vertical acceleration of 104 m/s2. The deflecting electric field is _____ MV/m.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An electron is immersed in a uniform electric field ?⃗ = ???̂. What is the direction of the acceleration of the electron if it has an initial velocity ?⃗ ? = ???̂?arrow_forwardTwo red blood cells each have a mass of 5.05 × 10-¹4 kg and carry a negative charge spread uniformly over their surfaces. The repulsion arising from the excess charge prevents the cells from clumping together. Once cell carries -2.60 pC of charge and the other -2.70 pC, and each cell can be modeled as a sphere 8.20 µm in diameter. What minimum relative speed u would the red blood cells need when very far away from each other to get close enough to just touch? Ignore viscous drag from the surrounding liquid. V = What is the magnitude of the maximum acceleration amax of each cell? Cmax = m/s m/s²arrow_forwardA pair of charged conducting plates produces a uniform field of 20,000 N/C, directed to the right, between the plates. The separation of the plates is 50 mm. A proton is projected from plate A, directly toward plate B, with an initial speed of vo = 1.0 × 105 m/s. What is the speed of the proton as it strikes plate B? Vo Provide the solution:___ x105 m/s + +arrow_forward
- Raindrops acquire an electric charge as they fall. Suppose a 2.4-mmmm-diameter drop has a charge of +12 pCpC. In a thunderstorm, the electric field under a cloud can reach 12,000 N/CN/C, directed upward. For a droplet exposed to this field, how do the magnitude of the electric force compare to those of the weight force? What is the direction of the electric force?arrow_forwardIn a salt crystal, the distance between adjacent sodium and chloride ions is 2.8×10−10×10−10 m. What is the force of attraction between the two singly charged ions?arrow_forwardAn electron enters a region of uniform electric field with an initial velocity of 56 km/s in the same direction as the electric field, which has magnitude E = 50 N/C. (a) What is the speed of the electron 1.6 ns after entering this region? (b) How far does the electron travel during the 1.6 ns interval? (a) Number i 4.19E4 (b) Number i 8.056E-6 Units Units km/s umarrow_forward
- At a particular moment, a proton is 10.0 cm away from a particle with charge 121 nC. If the speed of the proton at that time is m/s towards the particle, then what's its speed later when the proton is only 6.00 cm away?arrow_forwardThe ink drops have a mass mmm = 1.00×10−11 kg each and leave the nozzle and travel horizontally toward the paper at velocity v = 15.0 m/s. The drops pass through a charging unit that gives each drop a positive charge q by causing it to lose some electrons. The drops then pass between parallel deflecting plates of length D0D0D_0 = 2.15 cm, where there is a uniform vertical electric field with magnitude E = 7.70×104 N/C. 1) If a drop is to be deflected a distance d = 0.340 mmmm by the time it reaches the end of the deflection plate, what magnitude of charge q must be given to the drop? Assume that the density of the ink drop is 1000 kg/m3 , and ignore the effects of gravity.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON