College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Topic Video
Question
An initially stationary box of sand is to be pulled across a floor by means of a cable in which the tension should not exceed 876 N. The coefficient of static friction between the box and the floor is 0.360. (a) What should be the angle between the cable and the horizontal in order to pull the greatest possible amount of sand, and (b) what is the weight of the sand and box in that situation?
(a) | Number | Enter your answer for part (a) in accordance to the question statement | Units | Choose the answer for part (a) from the menu in accordance to the question statement This answer has no units° (degrees)mkgsm/sm/s^2NJWN/mkg·m/s or N·sN/m^2 or Pakg/m^3gm/s^3times |
(b) | Number | Enter your answer for part (b) in accordance to the question statement | Units | Choose the answer for part (b) from the menu in accordance to the question statement This answer has no units° (degrees)mkgsm/sm/s^2NJWN/mkg·m/s or N·sN/m^2 or Pakg/m^3gm/s^3times |
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 4 steps with 5 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The coefficient of static friction between a block of mass m and an incline is = 0•3. (a) What can be the maximum angle e of the incline with the horizontal so that the block does not slip on the plane ? (b) If the incline makes an angle 8/2 with the horizontal, find the frictional force on the block.arrow_forwardAn initially stationary box of sand is to be pulled across a floor by means of a cable in which the tension should not exceed 876 N. The coefficient of static friction between the box and the floor is 0.410. (a) What should be the angle between the cable and the horizontal in order to pull the greatest possible amount of sand, and (b) what is the weight of the sand and box in that situation? (a) Number i Units (b) Number Unitsarrow_forwardAn initially stationary box of sand is to be pulled across a floor by means of a cable in which the tension should not exceed 1110 N. The coefficient of static friction between the box and the floor is 0.430. (a) What should be the angle between the cable and the horizontal in order to pull the greatest possible amount of sand, and (b) what is the weight of the sand and box in that situation? (a) Number i (b) Number i Units Unitsarrow_forward
- An initially stationary box of sand is to be pulled across a floor by means of a cable in which the tension should not exceed 797 N. The coefficient of static friction between the box and the floor is 0.330. (a) What should be the angle between the cable and the horizontal in order to pull the greatest possible amount of sand, and (b) what is the weight of the sand and box in that situation? (a) Number i Units (b) Number Unitsarrow_forwardSuppose you have a stack of 17 identical steel bars (steel bars have a mass of 1.00kg each). You are required to pull out bar number 16 from the stack (counting from the top of the stack down). Assuming that your assistant holds all other bars in place. If the coefficient of friction between steel and steel is 0.750, how hard do you have to pull (in N)?arrow_forwardAn initially stationary box of sand is to be pulled across a floor by means of a cable in which the tension should not exceed 852 N. The coefficient of static friction between the box and the floor is 0.490. (a) What should be the angle between the cable and the horizontal in order to pull the greatest possible amount of sand, and (b) what is the weight of the sand and box in that situation? (a) Number i Units (b) Number i Unitsarrow_forward
- An initially stationary box of sand is to be pulled across a floor by means of a cable in which the tension should not exceed 769 N. The coefficient of static friction between the box and the floor is 0.410. (a) What should be the angle between the cable and the horizontal in order to pull the greatest possible amount of sand, and (b) what is the weight of the sand and box in that situation? (a) Number Units (b) Number i Unitsarrow_forward(a) A 4.53 kg salami is supported by a cord that runs to a spring scale, which is supported by another cord from the ceiling (see Figure (a)). What is the reading on the scale, which is marked in weight units? (b) In Figure (b) the salami is supported by a cord that runs around a pulley and to a scale. The opposite end of the scale is attached by a cord to a wall. What is the reading on the scale? (c) In Figure (c) the wall has been replaced with a second 4.53 kg salami on the left, and the assembly is stationary. What is the reading on the scale now? Spring scale Spring scale (6) Spring scale (a) (c) (a) Number i Units (b) Number i Units (c) Number i Unitsarrow_forwardAn initially stationary box of sand is to be pulled across a floor by means of a cable in which the tension should not exceed 924 N. The coefficient of static friction between the box and the floor is 0.490. (a) What should be the angle between the cable and the horizontal in order to pull the greatest possible amount of sand, and (b) what is the weight of the sand and box in that situation? (a) Number i Units (b) Number i Unitsarrow_forward
- An initially stationary box of sand is to be pulled across a floor by means of a cable in which the tension should not exceed 1230 N. The coefficient of static friction between the box and the floor is 0.310. (a) What should be the angle between the cable and the horizontal in order to pull the greatest possible amount of sand, and (b) what is the weight of the sand and box in that situation? (a) Number i Units (b) Number i Units > >arrow_forward(a) A 2.25 kg salami is supported by a cord that runs to a spring scale, which is supported by another cord from the ceiling (see Figure (a)). What is the reading on the scale, which is marked in weight units? (b) In Figure (b) the salami is supported by a cord that runs around a pulley and to a scale. The opposite end of the scale is attached by a cord to a wall. What is the reading on the scale? (c) In Figure (c) the wall has been replaced with a second 2.25 kg salami on the left, and the assembly is stationary. What is the reading on the scale now? Spring scale Spring scale (b) Spring scale (a) (c) (a) Number Units (b) Number i Units (c) Number Unitsarrow_forwardA 10.0 kg mass is at rest on a board inclined at an angle of 30.0o above the horizontal. The mass is held in place by the combination of static friction and the 10.6 N tension in a cord attached to the mass on the uphill side, and running parallel to the board. Find the coefficient of static friction (s) between the mass and the board.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON