
College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
thumb_up100%
An inductor L = 0.025 H and a 40 Ω resistor are connected in series to a 5 volt battery and a switch. At t = 0, the switch is closed to complete the circuit.
a) What is the potential difference across the resistor a long time after the switch is closed?
b) From the time the switch is closed, how long does it take for the current to reach 63% of the maximum value?
c) For a single loop circuit with a 2 Ω resistor, a single battery of 3 V, and a characteristic size (size of the loop) of 15.0 cm, the estimated inductance is 2 ✕ 10−7 H. What is the time constant of this RL circuit?
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 4 steps

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A 14.0 mH inductor makes the current drop from 178 mA to 66.0 mA in only 10.0 μs. What is the potential difference across the inductor? 0.00157 V -92.4 V -249 V 157 Varrow_forwardWhere a 44 V battery is connected to three resistors and an inductor with values R1 = 96 Ω, R2 = 24 Ω, R3 = 40 Ω, and L = 16 H. The switch has been OPEN for a LONG TIME. IMMEDIATELY AFTER we CLOSE the switch, what is the current in R3? 0.743 A 0.324 A 0.000 A 1.100 Aarrow_forwardThe primary coil in an ideal transformer has 1000 turns of wire and an emf of 100 V. The secondary coil has an emf of 10 V. How many turns of wire does the secondary coil have? 100 1000 10,000 100,000arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley

College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON