College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
An ideal polarizer with its transmission axis rotated 30 degrees to the vertical is placed in a beam of unpolarized light of intensity 10 W/m2. After passing through the polarizer, what is the intensity of the beam?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 1 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Polarizing windows, filters, etc. are often used to reduce the amount of light that enters the lens of a camera or into a room or a car. A library atrium has an overhead skylight that lets in too much light during the day which heats up the interior of the library far too much. The building engineer installs new double paned polarizing sky lights to reduce the intensity. If sunlight, which is unpolarized, has an average intensity of 1286 W/m2 what angle should the polarizing axis of the second pane of the window make with the polarizing axis of the first pane of the window in order to reduce the intensity of the sunlight to 29% of the original value?°arrow_forwardIf the RMS magnetic field strength of a sinusoidal plane EM wave is 0.368 millitesla, what is the average pressure it would impose on a reflective surface? N/m2 is the appropriate unit of measurement.arrow_forwardA wave is passing through two polarizers. It is an unpolarized electromagnetic wave, and it initially has a max electric field magnitude of 20000N/C. The 1st polarizer, polarizes at an angle of 20 degrees vertical. The 2nd polarizer, polarizes at an angle of 30 degrees horizontal. What would be the intensity of a light wave that passes through the two polarizers?arrow_forward
- Pleasearrow_forwardA solar sail 32.5 m2 in area and made of an absorptive material is orbiting the Sun in space. The Sun light normally incident on the solar sail exerts a radiation pressure of 3.22E-6 N/m2 on it. If the material is replaced with a reflective material that can complete reflect the Sun light, what will the radiation pressure become (in N/m2)?arrow_forwardAn industrial laser is used to burn a hole through a piece of metal. The average intensity of the light is S= 2.17 × 109 W/m2. What is the rms value of (a) the electric field and (b) the magnetic field in the electromagnetic wave emitted by the laser?arrow_forward
- An electromagnetic wave is normally incident on a flat surface. Assuming the power per unit area transmitted is S = 61.4 W/m², and the surface is a perfect absorber, what is the radiation pressure (in nPa) on the surface? nPa Need Help? Read Itarrow_forwardChapter 27: Problem 6: Unpolarized light of intensity I0 = 950 W/m² is incident upon two polarizers. The first has its polarizing axis vertical, and the axis of the second is rotated θ = 65° from the vertical. Randomized Variables I0 = 950 W/m² θ = 65° Part (a) What is the intensity of the light after it passes through the first polarizer in W/m²? Part (b) What is the intensity of the light after it passes through the second polarizer in W/m²?arrow_forwardUnpolarized light of intensity lo =208 W/m² passes through a first polarizer with its polarizing axis in the vertical position and then through a second polarizer oriented an angle of 84 degrees with the first polarizer. What is the intensity of the light emerging from the second polarizer? Enter you answer in W/m2 with one decimal place precision.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON