College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
thumb_up100%
An ice skater of 76 kg is moving at a speed of 12 m/s on a horizontal icy surface and then continuously sliding upward on a long ramp of ice. If air resistance and the friction are ignored, how high could the skater rise on the ramp with respect to the horizontal? Use the conservation law of mechanical energy only.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- At Schlitterbahn, a 75.0 kg person rides a 12.0 m high water slide. If dissipative forces do -6.25 x 10³ J on the rider as they go from rest at the top of the ride to the bottom, then what is the speed of the rider at the bottom of the slide? Include a diagram of the situation and indicate the mechanical energy at both the top and at the bottom of the slide.arrow_forwardA typical automobile engine has an efficiency of 25%. Suppose that the engine of a 1000-kg automobile has a maximum power output of 140 hp. What is the maximum grade that the automobile can climb at 50 km/h if the frictional retarding force on it is 300 N?arrow_forwardAn airplane pilot fell to the ground after jumping from an aircraft without his parachute opening. He lands in a snowbank, creating a crater 2.1 m deep, but survived with only minor injuries. Assuming the pilot’s mass was 68 kg and his terminal velocity was 35 m/s (the velocity at the point he stopped accelerating on his way down), what is: a) the average force exerted on him by the snow in bringing him to rest? b) the work done by the snow?arrow_forward
- Which of the following statements are true about mechanical energy? Include all that apply. The total amount of mechanical energy of an object is the sum of its potential energy and the kinetic energy. Heat is a form of mechanical energy. The mechanical energy of an object is always conserved. When non-conservative forces do work, energy is transformed from kinetic to potential (or vice versa), but the total mechanical energy is conserved. A bowling ball is mounted from a ceiling by way of a strong cable. It is drawn back and released, allowed to swing as a pendulum. As it swings from its highest position to its lowest position, the total mechanical energy is mostly conserved. When a friction force does work on an object , the total mechanical energy of that object is changed. The total mechanical energy of an object remains constant if the only forces doing work on the object are conservative forces. If an object gains mechanical energy, then one can be certain that a…arrow_forwardA 254 g textbook slides up a 20.3° incline that is 5.00 m long. Using conservation of energy and assuming the incline is frictionless, what minimum initial speed is needed to accomplish this?arrow_forwardA 58-kg pole vaulter running at 10 m/s vaults over the bar. Her speed when she is above the bar is 1.4 m/s. Neglect air resistance, as well as any energy absorbed by the pole, and determine her altitude as she crosses the bar. ____marrow_forward
- I place a 10 kg box at the top of a ramp that is inclined at 25 degrees. It then slides 8 m down the incline. If the incline has a coefficient of kinetic friction of 0.3, what is the speed of the block after it has completed its 8 m slide?arrow_forwardA 98 kg bicyclist traveling 15 m/s coasts up a 5 m high incline. After reaching the top of the incline, their speed has been reduced to 2 m/s. How much thermal energy from friction was lost between the two points given?arrow_forwardScenario: Some Marines are lowering a 170 kg sled loaded with ammunition down a hill, when the rope breaks and the sled begins sliding uncontrolled. Beginning with a speed of 1.9 m/s, the sled loses 4.3 meters of elevation before coming to a stop. Question: How much thermal energy (in joules) was generated in the sled and the hill during the slide?arrow_forward
- During a rockslide, a 440 kg rock slides from rest down a hillside that is 500 m long and 300 m high. The coefficient of kinetic friction between the rock and the hill surface is 0.32. (a) If the gravitational potential energy U of the rock-Earth system is set to zero at the bottom of the hilI, what is the value of U just before the slide? (b) How much energy is transferred to thermal energy during the slide? (c) What is the kinetic energy of the rock as it reaches the bottom of the hill?arrow_forwardA box of 9kg is released from rest on a rough inclined plane and slides to the bottom. The plane is inclined at a 230 angle to the horizontal and it is 5.1 m high. The coefficient of kinetic friction between the box and the plane is 0.1. Use conservation of energy to determine the speed of the block as it reaches the bottom.arrow_forward7. A crate of mass 10.0 kg is pulled up a rough incline with an initial speed of 1.50 m/s. The pulling force is 100 N parallel to the incline, which makes an angle of 20.0° T with the horizontal. The coefficient of kinetic friction is 0.400, and the crate is pulled 5.00 m. (a) How much work is done by the gravitational force on the crate? (b) Determine the increase in internal energy of the crate- incline system owing to friction. (c) How much work is done by the 100-N force on the crate? (d) What is the change in kinetic energy of the crate? (e) What is the speed of the crate after being pulled 5.00 m?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON