
An Introduction to Physical Science
14th Edition
ISBN: 9781305079137
Author: James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
An experiment is performed in an ideal condition to find out the velocity of a particle obeying the equation S=vtS=vt where the distance travelled (S)(S) inside
a labeled glass tube by a particle with an uniform velocity (v)(v) is measured with respect to time taken (t)(t). The data collected by repeating the experiment
five times is shown in the table below
If we use the method to minimize the squared sum error, what is the most likely velocity of the particle among the given options?
2.5
1.5
2
1

Transcribed Image Text:S(t) (in cm) | 3 9 13 14 17
t (in sec)
2 4 6 8
10
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 3 steps with 1 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A sidewalk is to be constructed around a swimming pool that measures (10.0 0.1) m by (17.0 0.1) m. If the sidewalk is to measure (1.00 0.01) m wide by (9.0 0.1) cm thick, what volume of concrete is needed and what is the approximate uncertainty of this volume?arrow_forwardIn Figure P1.49, find (a) the side opposite , (b) the side adjacent to . (c) cos , (d) sin , and (c) tan . Figure P1.49arrow_forwardOne student uses a meterstick to measure the thickness of a textbook and obtains 4.3 cm 0.1 cm. Other students measure the thickness with vernier calipers and obtain four different measurements: (a) 4.32 cm 0.01 cm. (b) 4.31 cm 0.01 cm, (c) 4.24 cm 0.01 cm, and (d) 4.43 cm 0.01 cm. Which of these four measurements, if any, agree with that obtained by the first student?arrow_forward
- A surveyor measures the distance across a straight river by the following method (Fig. P3.7). Starting directly across from a tree on the opposite bank, she walks d = 100 m along the riverbank to establish a baseline. Then she sights across to the tree. The angle from her baseline to the tree is = 35.0. How wide is the river?arrow_forwardA surveyor measures the distance across a straight river by the following method (Fig. P1.6). Starting directly across from a tree on the opposite bank, she walks d = 100 m along the riverbank to establish a baseline. Then she sights across to the tree. The angle from her baseline to the tree is 0 = 35.0. How wide is the river? Figure P1.6arrow_forwardWrite the following quantities in standard units. (a) 0.55 Ms (b) 2.8 km (c) 12 mg (d) 100 cmarrow_forward
- When non-metric units were used in the United Kingdom, a unit of mass called the pound-mass (lbm) was employed, where 1 lbm = 0.4539 kg. (a) If there is an uncertainty of 0.0001 kg in the pound-mass unit, what is its percent uncertainty? (b) Based on that percent uncertainty, what mass in pound-mass has an uncertainty of 1 kg when converted to kilograms?arrow_forwardA house is advertised as having 1 420 square feet under its roof. What is area in square meters? (a) 4 660 m2(b) 132 m2 (c) 158m2 (d) 132 m2 (e) 10.2m1arrow_forwardThe distance to the Sun is 93 miIlion miles. What is the distance to the Sun in the appropriate SI units?arrow_forward
- If you live in the United States, you probably know your height in feet and inches. In other countries, metric units are commonly used for measuring such quantities. First, find your height in inches. Then determine your height in a. centimetens and b. metersarrow_forwardUse the rules for significant figures to find the answer to the addition problem 21.4 + 15 + 17.17 + 4.003. (See Section 1.4).arrow_forwardThe standard unit of ___ is the same in all measurement systems. (1.4)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning

An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning