College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
An electron (negative charge), a proton (positive charge), and a neutron (no charge) walk into a bar with the same speed. If there is a uniform magnetic field in the bar, from the ceiling to the floor, sketch the path of these three particles in the bar.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- a charged particle enters a mass spectrometer with uniform magnetic field B= .60 T pointing into the page. if the particle has mass m= 3.2 x10^-12 kg and is travelling at a speed of 5.0 x 10^5 m/s, then it is seen to curve in the magnetic field as shown and strikes a detector d=12.0 cm away from the point where it entered the mass spectrometer. what is the charge on the particle? a) +44 microC b) -44 microC c) -68 microC d) +68 microCarrow_forwardAs shown in the figure, a small particle of charge q= 6.3 µ C and mass 3.84 x 1012 kg has velocity 9.0 x 10° m/s as it enters a region of uniform magnetic field. The particle is observed to travel in the semicircular path shown, with radius R= 5.0 cm. Calculate the magnitude and direction of the magnetic field in the region in T. If the field is into the page, give a negative number. If the field is out of the page, give a positive number. Region of magnetic field R Path of the particlearrow_forwardAn electron is launched at a speed of v at an angle of 0 north of east into a region with a uniform magnetic field. The magnitude of the magnetic field is B and the field is pointing due east. a) Find the radius of curvature of the trajectory. b) Find the pitch (the distance traveled during one revolution, perpendicular to the plane of circular motion) of the trajectory.arrow_forward
- As shown in the figure, a long, hollow, conducting cylinder of inner radius a and outer radius b carries a current that is flowing out of the page. Suppose that a = 4.93 cm, b = 7.93 cm, and the current i = 103 mA, uniformly distributed over the cylinder wall (between a and b). Find the magnitude of the magnetic field at each of the following distances r from the center of the cylinder: a)r = 6.39 cm. b) r = 9.25 cm.arrow_forwardA long straight wire carries a 1.5 A current. An electron moves parallel to the wire at speed 1.3 x 104 m/s. The distance between the electron and the wire is 7 cm. Calculate the magnitude of the magnetic force on the electron.(Give your answer in newtons. Don't round your answer.)arrow_forwardTwo very long, parallel wires are separated by a distance of 2 m. The top wire carries a current of 16 A flowing to the left. Point x lies between the wires, 0.4 m below the top wire (see figure below). (a) What is the strength of the magnetic field at point x due to the top wire? For part (a) and (b) you may assume no current is flowing in the bottom wire. (b) What is the direction of the magnetic field at point x due current flowing in the top wire? (Give your answer in terms of toward the top, bottom, left side, right side, into, or out of the page.) (c) What current must flow through the bottom wire to have the net (total) magnetic field be zero at point x? Specify both the magnitude and the direction of the current.arrow_forward
- An electron in the beam of a cathod-ray tube is accelerated by a potential difference of 2.14 kV . Then it passes through a region of transverse magnetic field, where it moves in a circular arc with a radius of 0.190 m . What is the magnitude of the field?arrow_forwardEach of the figures below shows a charged particle (with the charge sign indicated on each particle) moving from a region of zero magnetic field to a region of uniform magnetic field B. For each case, find the initial direction in which the charged particle is deflected (if any) as it enters the magnetic field. (a) Bin х х х х х х х * x x x O up O down O to the right O to the left O into the page O out of the page O no deflection (b) Bup O up O down O to the right O to the left O into the page O out of the page O no deflection (c) Bright up O down O to the right O to the left O into the page O out of the page O no deflection (d) Bat 45 450 O up O down O to the right O to the left O into the page O out of the page O o oarrow_forwardAn electron moves in a uniform circular motion under the action of an external magnetic field. -19 Consider the charge of the electron 9 = -1.6 × 10- v = 2.8 X 107 [C], the speed of the electron B = 2.1 x 10-³ [m/s] and the magnitude of the external magnetic field [T]. Calculate the radius R of the circle formed by the electron during its displacement. Write your answer in centimeters and round to the first decimal.arrow_forward
- A bubble chamber is a vessel with a uniform magnetic field running through it filled with a superheated transparent liquid (most often liquid hydrogen) used to detect electrically charged particles moving through it. It was invented in 1952 by Donald A. Glaser, for which he was awarded the 1960 Nobel Prize in Physics. Here is a photograph obtained in a bubble chamber, showing various charges circling around because of the magnetic field: Which of the following statements is false? Hint: Use the formula you found in the last question to help you with this question. Particles with positive charge will circle in one direction (perhaps clockwise) while particles of negative charge will circle in the opposite direction (perhaps counterclockwise). Heavier charges would have a larger radius of curvature, Particles with a larger charge would have a larger radius of curvature. Faster particles would have a larger radius of curvature. Increasing the magnetic field strength in the bubble chamber…arrow_forwardWhich describes the net force on a magnetic dipole in a uniform magnetic field? The net force vector is in the direction of the magnetic field. O The net force vector is in the direction opposite that of the magnetic field. The net force vector is perpendicular to the direction of the magnetic field. O The net force vector is zero.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON