Question
An electron is trapped in a region between two infinitely high energy barriers. In the region between the barriers the potential energy of the electron is zero. The normalized wave function of the electron in the region between the walls is ψ(x) = Asin(bx), where A=0.5nm1/2 and b=1.18nm-1. Find the energy of the electron in this state of motion.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps with 2 images

Knowledge Booster
Similar questions
- The normalised wavefunction for an electron in an infinite 1D potential well of length 89 pm can be written:ψ=(-0.696 ψ2)+(0.245 i ψ9)+(g ψ4). If the state is measured, there are three possible results (i.e. it is in the n=2, 9 or 4 state). What is the probability (in %) that it is in the n=4 state?arrow_forwardA particle has a wave function y(r)= Ne¯u , where N and a are real and positive constants. a) Determine the normalization value N. b) Find the average value of y c) Obtain the dispersion (Ar)? Note, you can use dz =r'(n+1) = n!arrow_forwardThe wave function of a particle in a one-dimensional box of width L is u(x) = A sin (7x/L). If we know the particle must be somewhere in the box, what must be the value of A?arrow_forward
- = = An electron having total energy E 4.60 eV approaches a rectangular energy barrier with U■5.10 eV and L-950 pm as shown in the figure below. Classically, the electron cannot pass through the barrier because E < U. Quantum-mechanically, however, the probability of tunneling is not zero. Energy E U 0 i (a) Calculate this probability, which is the transmission coefficient. (Use 9.11 x 10-31 kg for the mass of an electron, 1.055 x 10-34] s for h, and note that there are 1.60 x 10-19 J per eV.) (b) To what value would the width L of the potential barrier have to be increased for the chance of an incident 4.60-eV electron tunneling through the barrier to be one in one million? nmarrow_forwardAn electron moving in a box of length ‘a’. If Z1 is the wave function at x1 = a/4 with n=1 and Z2 at x = a/4 for n=2 find Z1/Z2arrow_forwardThe expectation value of a function f(x), denoted by (f(x)), is given by (f(x)) = f(x)\(x)|³dx +00 Yn(x) = where (x) is the normalised wave function. A one-dimensional box is on the x-axis in the region of 0 ≤ x ≤ L. The normalised wave functions for a particle in the box are given by -sin -8 Calculate (x) and (x²) for a particle in the nth state. n = 1, 2, 3, ....arrow_forward
- In the lab you make a simple harmonic oscillator with a 0.15-kg mass attached to a 12-N/m spring. (a) If the oscillation amplitude is 0.10 m, what is the corresponding quantum number n for the quantum harmonic oscillator? (b) What would be the amplitude of the quantum ground state for this oscillator? (c) What is the energy of a photon emitted when this oscillator makes a transition between adjacent energy levels? Comment on each of your results.arrow_forwardShow that normalizing the particle-in-a-box wave function ψ_n (x)=A sin(nπx/L) gives A=√(2/L).arrow_forwardAn electron is in an infinite potential well of width 364 pm, and is in the normalised superposition state Ψ=cos(θ) ψ5-sin(θ) i ψ8. If the value of θ is -1.03 radians, what is the expectation value of energy, in eV, of the electron?arrow_forward
arrow_back_ios
arrow_forward_ios