Question

Transcribed Image Text:An electron is moving at 6.0 x 10^6 m/s. A photon of what wavelength would
have the same (relativistic) momentum as the electron?
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps

Knowledge Booster
Similar questions
- During a certain experiment, the de Broglie wavelength of an electron is 440 nm = 4.4 x 10-7 m, which is the same as the wavelength of violet light. How fast (in m/s) is the electron moving? m/sarrow_forwardDuring a certain experiment, the de Broglie wavelength of an electron is 500 nm = 5.0 ✕ 10−7 m, which is the same as the wavelength of green light. How fast (in m/s) is the electron moving?arrow_forwardDe Broglie postulated that the relationship ? = h/p is valid for relativistic particles. What is the de Broglie wavelength for a (relativistic) electron having a kinetic energy of 3.18 MeV?arrow_forward
- A light source emitting radiation at 7.00 x 10¹4 Hz is incapable of ejecting photoelectrons from a certain metal. In an attempt to use this source to eject photoelectrons from the metal, the source is given a velocity toward the metal. b) When the speed of the light source is equal to 0.280c, photoelectrons just begin to be ejected from the metal. What is the work function of the metal?arrow_forwardLouis de Broglie proposed that a particle of mass m and moving at the speed v will have a wavelength related to its momentum. Air molecules of mass 30 amu travel at speeds which you can take to be 500 ms-1. Calculate their de Broglie wavelength.arrow_forwardThe momentum of light, as it is for particles, is exactly reversed when a photon is reflected straight back from a mirror, assuming negligible recoil of the mirror. The change in momentum is twice the photon’s incident momentum, as it is for the particles. Suppose that a beam of light has an intensity I and falls on an area A of a mirror and reflects from it. Er = I A t p = 2 ( I A t )/c Use Newton’s second law to write an equation for the force on the mirror for time t. Use the variables along with c for the speed of light.arrow_forward
- A light source is emitting radiation at 7.63•1014 Hz is incapable of ejecting photoelectrons from a certain metal. However, if the source is given a velocity of 0.28 c towards the metal, photoelectrons just begin to be ejected. A) What is the work function of the metal ? B) Determine the stopping voltage if the source is instead moved at 0.57 c towards the metal ?arrow_forwardX-ray photons of wavelength 0.0248 nm are incident on a target and the Compton-scattered photons are observed at 80.0° above the photons' incident line of travel. [Use relativistic units for this problem!](a) What is the momentum of the incident photons? eV/c(b) What is the momentum (magnitude and angle) of the scattered electrons? eV/c°magnitude=61802.35 angel=?arrow_forwardWhat is the de Broglie wavelength for an electron with speed (a) v = 0.480c and (b) v = 0.960c?arrow_forward
arrow_back_ios
arrow_forward_ios