An electron is confined in a 0.4 nm-wide region with a potential energy depth of 14.0 eV. What is the ratio of the penetration distances into the classically forbidden region for the electron in the n =1 and n = 3 states? (Hints: Content in Lecture 10 is required to solve this problem. The “penetration distance” is the characteristic distance the particle’s wave function can penetrate into a potential energy barrier.)

Modern Physics
3rd Edition
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Chapter6: Quantum Mechanics In One Dimension
Section: Chapter Questions
Problem 16P
icon
Related questions
Question

An electron is confined in a 0.4 nm-wide region with a potential energy depth of 14.0 eV. What is the ratio of the penetration distances into the classically forbidden region for the electron in the n =1 and n = 3 states? (Hints: Content in Lecture 10 is required to solve this problem. The “penetration distance” is the characteristic distance the particle’s wave function can penetrate into a potential energy barrier.)

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Band Theory
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Modern Physics
Modern Physics
Physics
ISBN:
9781111794378
Author:
Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:
Cengage Learning