College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
An electron in an infinitely deep potential well has a ground-state energy of 0.300 eV. (a) Show that the photon emitted in a transition from the n = 3 state to the n = 1 state has a wavelength of 517 nm, which makes it green visible light. (b) Find the wavelength and the spectral region for each of the other five transitions that take place among the four lowest energy levels.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 5 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Question 9. While most transition metals have work functions corresponding to photon frequencies that are larger (higher) than visible light, alkali and alkaline earth metals have low-energy work functions. For example, calcium has a work function of o = 4.3419×10-19 J. (a) What is the initial state n, for the hydrogen emission lines at visible wavelengths (i.e., those with n = 2) for the lowest-energy photon that would eject an electron from calcium? %3! (b) If the colors of the visible hydrogen emission lines (n; = 3 to n = 6) are red, green, blue and %3D violet, which colors are capable of ejecting the electrons from calcium? (c) The energy of the emitted photon you identified in part (a), is not identical to the workfunction of calcium. Therefore, the electron is ejected from the metal surface with some kinetic energy (i.e., energy is conserved in the photoelectric effect process). What would the velocity of the electron ejected from calcium (in meters per second)?arrow_forwardi can confirm the answer of 3.08*10^4 is wrongarrow_forwardWhile most transition metals have work functions corresponding to photon frequencies that are larger (higher) than visible light, alkali and alkaline earth metals have low-energy work functions. For example, calcium has a work function of Po = 4.3419x10-19 J. (a) What is the initial state n; for the hydrogen emission lines at visible wavelengths (i.e., those with nf = 2) for the lowest-energy photon that would eject an electron from calcium? (b) If the colors of the visible hydrogen emission lines (n; = 3 to n; = 6) are red, green, blue and violet, which colors are capable of ejecting the electrons from calcium? (c) The energy of the emitted photon you identified in part (a), is not identical to the workfunction of calcium. Therefore, the electron is ejected from the metal surface with some kinetic energy (i.e., energy is conserved in the photoelectric effect process). What would the velocity of the electron ejected from calcium (in meters per second)?arrow_forward
- A light wave of a particular frequency hits a metal. The light wave is made of discrete photons, each with energy hf = hc/λ. An electron will either completely absorb a photon, or not at all. An electron in a metal needs an energy to leave the metal -- the work function (W). For the W given, calculate the maximum light wavelength (in nm) that will eject an electron. I will use electron-volts (eV) for energy, because the computer gives me trouble with very low numbers. hc = 1240 eV nm W = 3.9 eVarrow_forwardWhat is the longest - wavelength line in nanometers in the infrared series for hydrogen where m = 3?arrow_forwardThe L series of the characteristic x-ray spectrum of tungsten contains wavelengths of 0.1099 nm and 0.1282 nm. The L-shell ionization energy is 11.544 keV. Which x-ray wavelength corresponds to an N → L transition? Determine the ionization energies of the M and N shells: If the incident electrons were accelerated through a 40.00 keV potential difference before striking the target, find the shortest wavelength of the emitted radiation:arrow_forward
- Some of the most powerful lasers are based on the energy levels of neodymium in solids, such as glass, as shown . (a) What average wavelength light can pump the neodymium into the levels above its metastable state? (b) Verify that the 1.17 eV transition produces1.06 μm radiation.arrow_forwardThe wavelength of the emitted photon from the hydrogen molecule H2 is 2.30 μm (micrometers) when the vibrational quantum number decreases by one. What is the effective "spring constant" for the H2 molecule in N/m ?What is the "zero point" energy (in eV) of the molecular vibration?arrow_forwardA particle is in the n = 9 excited state of a quantum simple harmonic oscillator well. A photon with a frequency of 3.95 x 1015 Hz is emitted as the particle moves to the n = 7 excited state. What is the minimum photon frequency required for this particle to make a quantum jump from the ground state of this well to the n = 8 excited state? (Give your answer in Hz.)arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON