College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
An electron in a multielectron atom has ML=+4 . For this
electron, what are (a) the value of , (b) the smallest possible value
of n, and (c) the number of possible values of ms?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A hydrogen atom is in its second excited state (n = 3). Using the Bohr theory of the atom, calculate the following. (a) the radius of the orbit nm(b) the linear momentum of the electron kg · m/s(c) the angular momentum of the electron J · s(d) the kinetic energy eV(e) the potential energy eV(f) the total energy eVarrow_forwardc) The Bohr model of the atom postulated electrons orbiting around the nucleus in stable orbits. De Broglie explained what orbits could exist by postulating that electrons (and any- thing else) with momentum p have an associated wavelength λ, given by λ=h/p where h is Planck's constant. i) For an electron orbiting around a proton (the Bohr model), equating the centripetal force with the Coulomb force gives the expression v² = e²/(4πεmer). Calculate the speed of an electron orbiting at the Bohr radius, ˜Â = 0.053 nm. ii) Calculate the momenta and the de Broglie wavelengths of the electron of part (i) and of a bird (a racing pigeon) that weighs 0.350 kg and flies at 100 km per hour. iii) Compare the wavelength for the electron that you obtain in (ii) with the circumference of the orbit. Comment on this comparison. Explain briefly what it implies about the other possible orbits of the Bohr model and how the higher orbits might be predicted.arrow_forwardIn the Bohr model of the atom, we assume that nanoscale particles behave according to classical physics (This assumption is not entirely justified, but does work surprisingly well). In this model, an electron (mass m = 9.11 x 10-³1 kg) orbits a nucleus at a distance that depends on the principal quantum number of the electron (1s orbital, 2s orbital, etc) and the composition of the nucleus. If the electron orbits at a distance of 9.90 x 10-¹1 m due to a Coulomb force of 2.35 x 10-8 N, how many revolutions per second does the electron make? 2.569arrow_forward
- A hydrogen atom is in its third excited state (n = 4). Using the Bohr theory of the atom, calculate the following. (a) the radius of the orbit nm (b) the linear momentum of the electron kg • m/s (c) the angular momentum of the electron J.S (d) the kinetic energy eV (e) the potential energy eV (f) the total energy eVarrow_forwardThe nucleus of a typical atom is 5.0 fm (1 fm = 10-15 m) in diameter. A very simple model of the nucleus is a onedimensional box in which protons are confined. Estimate the energy of a proton in the nucleus by finding the first three allowed energies of a proton in a 5.0-fm-long box.arrow_forwardThe quantum state of an electron in an atom is described by quantum numbers n = 6, ℓ = 5, and mℓ = 2. The z-component orbital angular momentum of the electron is measured to be x × h/2π, where h is Planck’s constant. What is the number x (remember to use the scientific notation)?arrow_forward
- The total probability of finding an electron in the hydrogen atom is related to the integral ∫ r2 e-2r/ao dr Where r is the distance of the electron from the nucleus and ao is the Bohr radius. Evaluate thisintegral.arrow_forwardThe electron in a certain hydrogen atom has an angular momentum of 2.583×10−34 J.s. What is the largest possible magnitude for the z-component of the angular momentum of this electron? For accuracy, use h=6.626×10−34 J⋅s. find Number Unitsarrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON