College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
An electron for a hydrogen atom absorbed enough energy to move to the third energy level and immediately returned to ground state, emitting the energy it absorbed. A second hydrogen atom had its electron absorb the same amount of energy but, instead of returning directly to ground state, it moved to the second energy level and then to ground state. What can be said of the energy emitted by these two electrons that took different paths?
Expert Solution
arrow_forward
Step 1
The energy of different levels in Hydrogen atom is given by
E1=-13.6 eV (first energy level)
E2=-3.4 eV (second energy level)
E3=-1.51 eV (third energy level)
Step by stepSolved in 3 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 8-1. Show that the atomic unit of energy can be written as ħ² e² ma Απερβο En = me 16π εjhtarrow_forwardFor an electron in a hydrogen atom, which of the following transitions would represent the largest quantum of energy being absorbed? Hydrogen Energy Transitions and Radiation Level n = ∞ n = 5 n = 4 486 nm n = 3 Infrared 434 nm 656 nm wavelengths n = 2 Visible wavelengths Ionization n = 1 Ultravioletarrow_forward4. In a hydrogen atom, the electron makes ω = 6×1015 rev/s (recall that this is the angular velocity) around the nucleus. We want to calculate how much current flows through a point in the orbit. (a) Calculate the time period of the orbit. Start by converting ω into rad/s. (b) Use the definition of current to calculate I due to the revolution of the electron around the nucleus.arrow_forward
- 1a) Use the table below to determine the energy in eV of the photon absorbed when an electron jumps up from the n = 1 orbit to the n = 2 orbit of a hydrogen atom. =_________ eV 1b ) Use the table shown below to determine the energy in eV of the photon emitted when an electron jumps down from the n = 3 orbit to the n = 2 orbit of a hydrogen atom.=___________ eVarrow_forward10. An electron has been placed at the origin. The grid spacing is 1 Angstrom per small square this time. Now you have a nucleus with 18 protons at x = 2.1 Angstroms on the x-axis. How much work would it take to bring in ANOTHER nucleus with 14 protons from 1 m away and place it at y = 8.0 Angstroms on the y-axis? 165.2 eV 413.1 eV -25.2 eV 438.2 eVarrow_forwardWhat two pieces of evidence allowed the first calculation of me , the mass of the electron?(a) The ratios qe / me and q p / m p .(b) The values of qe and EB .(c) The ratio qe / me and qe .Justify your response.arrow_forward
- (a) After J. J. Thompson experimentally discovered the existence of electrons in 1897, he went on to propose the plum pudding model of matter. What was the plum pudding model? What did Ernest Rutherford conclude about the structure of matter based on his experimental results from bombarding gold foil with alpha particles? (b) What was the proposed atomic model of matter put forward by Rutherford? Theoretically what was the problem with his proposed model of the atom? (c) What was the modification made by Niels Bohr to Rutherford's model, i.e., what were the assumptions that Bohr made for his version of the atomic model of matter? (d) What observational phenomena was Bohr's proposed model able to explain? How did his model explain these phenomena? (e) Draw an energy level diagram with one representative transition to support your answer to part (d).arrow_forwardAssume a hypothetical atom with a nucleus that consists of two positrons (instead of two protons). Positron has a charge of +1 and the mass of an electron. Write down the hydrogen like energy of a neutral 2-positrons atom.arrow_forwardThe work function of a metal is is 2.04 e V. What will be the frequency of light required to eject electrons? * (2 Points) 3.2 x10 ^15 Hz O 4.2 x10 ^15 Hz O 3.2 x10 ^15 Hz 4.9 x19 ^14 Hzarrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON