College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Expert Solution
arrow_forward
Step 1
Given,
Electron moving under perpendicular electric and magnetic field so that net force on electron is zero .
Electric field (E)= 1.84kV/m
Magnetic field (B)= 0.499T
Let electron is moving with speed v , v is perpendicular to E and B
Step by stepSolved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 6. A particle with a charge of g = 1.6 x 10-19 C and a mass of 1.39 x 10-25 kg enters a mass spectrometer with a velocity of 4.0 x 105 ™. The particle strikes the detector 60 cm from where it entered the magnetic field. What is the strength of the magnetic field? 60 ст v = 4.0 x 105 m = 1.39 x 10-25 kg 4. O O O O O O O O O O O O. O O/O O O Q O O O aO O O OO O O O O Q. O O O O O O O Oarrow_forwardA particle with a charge of -1.2 x 10-8 C is moving with instantaneous velocityv = (4.2 x 104 m/s) i + (-3.8 x 104 m/s) j. What are the components of the force exerted on this particle by a magnetic field B = (1.4 T) i + (2.4 T) k ?arrow_forwardThe figure below displays a circular loop of conducting wire in a uniform magnetic field pointing into the page. The radius of the loop is 10.0 cm and the magnitude of the field is 0.160 T. You grab points A and B and pull them in opposite directions, stretching the loop until its area is nearly zero, taking a time of 0.170 s to do so. What is the magnitude of the average induced emf in the loop (in mV) during this time? * х * X x х A x * * x K mV X x * x. B * * *arrow_forward
- A proton, that is accelerated from rest through a potential of 60 kV enters the velocity filter, consisting of a parallel-plate capacitor and a magnetic field, shown below. What is the proton's speed? Take т, — 1.67 х 10 27 kg and e - 1.6 x 10 19 с. B The speed, v - Units Select an answer The E-field between the plates is 1.3 x 106 N/C. What B-field is required so that the protons are not deflected? The magnetic field, B = Units Select an answerarrow_forwardA magnetic field has a magnitude of 0.0014 T, and an electric field has a magnitude of 3.5 × 103 N/C. Both fields point in the same direction. A positive 1.7-μC charge moves at a speed of 2.8 x 106 m/s in a direction that is perpendicular to both fields. Determine the magnitude of the net force that acts on the charge. Number 1+1 P90⁰ Units BAarrow_forwardAn electric field of 1.51 kV/m and a perpendicular magnetic field of 0.413 T act on a moving electron to produce no net force. What is the electron's speed?arrow_forward
- A proton is moving in a region where the magnetic and electric fields are perpendicular to each other and produce no net force. If the electric field has a strength of 5.00 x 10^6 N/C and the magnetic field has a strength of 0.800 T, how fast was the proton moving in m/s? a. 4.00 x 10^6 m/s b.6.25x10^6 m/s c.2.5x10^-7 m/s d.1.6x10^-7 m/sarrow_forwardPart 2) A proton moving with a speed 3.84 × 10° m/s through a 2.99 T magnetic field experiences a force of magnitude 1.59 x 10-12 N. (Mass of the proton = 1.673 × 10¬27 kg, charge 1.602 × 10-19 C). What is the angle between the proton's velocity and the magnetic field? Part 3) What is the proton's acceleration? a = m/s?arrow_forward29. At an instant in time, an electron has velocity, v = 100i - 300j + 200k km/s while it is in a magnetic field, B = 2i - 3j + 4k T. Find the acceleration of the electron at this instant. Use the vector table below to show any important vectors. Show only numerical results in the table. (m = 9.109 X 10" kg, q = -i.6 X 10'1º C) Vector i karrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON