
College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
An electric field in a vacuum is determined to be polarized in the +y-direction. It has a peak of 250 μV/m at z = 0, and the next peak is at z = 5 cm. Determine phase velocity, propagation constant, wavelength, period, frequency, and radial frequency for this wave and write a complete function for e(z,t).
Complete Solution please
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 4 steps

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Problem 1. In class we will consider the sum of the electric field of two plane waves, u:(z.t) and uz(z.t), both traveling in the positive z direction with slightly different frequencies and propagation constants and with equal amplitudes. The electric fields of both plane waves are oriented in the y direction, which means that they have the same "polarization". The time and space variation of the two electric fields are given by: u: (2.1) = cos(@t - kz) uz(2.1) = cos ([o + Ao]t - [k + Ak]2) We will show that the sum of these two waves produce an intensity envelope in time and space that modulates the carrier frequency of m + Ao/2. The velocity of the envelope is called the group velocity. Assume Ao is << than o. For this problem, consider the sum of two slightly different waves with similar electric fields: v.(z) = sin(ot - kz) vz(z1) = sin([o + Ao]t - [k + Ak]z) Derive analytically an expression for a) the group and b) the phase velocity for the sum of the two fields. HINT: sinfa) +…arrow_forwardProve that the spherical wave given by: ?(?,?) = (A ei k (r-vt))/r is indeed a solution of the three-dimensional wave equation Hint: Write the wave equation in spherical coordinates (therefore, you should use the Laplacian written in terms of r, ?, ?, and insert the solution given above into the wave equation.arrow_forwardh) The difference in arrival time between wave-packets with centre frequencies of ω1 and ω2 is Δt. What is DM in terms of Δt ?arrow_forward
- Answer all these questionsarrow_forwardA number N of plane waves are travelling parallel; the waves share a common wavevector k and common direction of electric field vector along unit vector û, but each wave has its own distinct amplitude Eo and phase difference &;. Therefore the ith wave (for 1 ≤ i ≤ N) has electric field given by E₁ = Eoiû Re [exp j(k-r - wt+d;)]. From this, prove that the total intensity Inet including interference is given by Ec|² 27⁰ where the complex amplitude E, is defined by Inet and 70 is the impedance of free space. N Ec = Eoi exp(joi), 7 i=1arrow_forwardneed answer itarrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley

College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON