Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 3 steps with 2 images
Knowledge Booster
Similar questions
- Suppose Fuzzy, a quantum-mechanical duck, lives in a world in which h=2π Js. Fuzzy has a mass of 2.00 kg and is initially known to be within a pond 1.00 m wide. What is the minimum uncertainty in the component of the duck's velocity parallel to the width of the pond?arrow_forwardA nucleon (proton or neutron) is confined to a region of space (the nucleus) approximately 10 fm across. Assuming the momentum of a nucleon is roughly equal to the uncertainty in its momentum, estimate the nucleon's kinetic energy. Does this seem like a reasonable result?arrow_forwardUsing partial derivatives, calculate the propagated uncertainty in the mass in the following case: given the centripetal force Fc = (20.0 ± 0.5) N, the angular velocity w = (29.2 ± 0.3) rad/s, and the radius R = (0.12 ± 0.01) m get the mass value,m = Fc / (w2R). Express the result in the form m = m + Δm ----------------------------------- THAT'S THE QUESTION ASKED, see the image for the answer. Also have a look at the second image, the blue one. --------------------------------------------------------------- Explain what is the 1/m just after the equals sign at the second line of the answer. Also, explain why the answer does not use the square root just like the blue image, of if it is using it. Then, say in which case should I use the partial derivate to calculate the uncertainty.arrow_forward
- (a) The position of an electron is known to within 14.5 Å (1.45×10-9 m). What is the minimum uncertainty in its velocity?(b) Repeat the calculation of part (a) for a helium atom.arrow_forwardQUESTION 4 E sin () sin () sin () 3nx 2nz Consider the case of a 3-dimensional particle-in-a-box. Given: Y = 1.5 What is the size of the box along the x-dimension? 2 3 none are correctarrow_forwardAn object is moving along a straight line, and the uncertainty in its position is 2.20 m. (a) Find the minimum uncertainty in the momentum of the object. Find the minimum uncertainty in the object's velocity, assuming that the object is (b) a golf ball (mass = 0.0450 kg) and (c) an electron. (a) Number (b) Number (c) Number Units Units Unitsarrow_forward
arrow_back_ios
arrow_forward_ios