An astronaut finds herself in a predicament in which she has become untethered from her shuttle. She figures that she could get back to her shuttle by throwing one of three objects she possesses in the opposite direction of the shuttle. The masses of the objects are 5.4 kg, 7.9 kg, and 10.1 kg, respectively. She is able to throw the first object with a speed of 15.00 m/s, the second with a speed of 14.2 m/s, and the third with a speed of 7.0 m/s. If the mass of the astronaut and her remaining gear is 75.0 kg, determine the final speed of the astronaut with respect to the shuttle if she were to throw each object successively, starting with the least massive and ending with the most massive. Assume that the speeds described are those measured in the rest frame of the astronaut.
Trending nowThis is a popular solution!
Step by stepSolved in 4 steps with 5 images
- A BB gun is fired at a cardboard box of mass m2 = 0.75 kg on a frictionless surface. The BB has a mass of m1 = 0.0165 kg and travels at a velocity of v1 = 91 m/s. It is observed that the box is moving at a velocity of v2 = 0.17 m/s after the BB passes through it. (a) Write an expression for the magnitude of the BB's velocity as it exits the box vf. vf = v1 - m2/m1 v2 ✔ Correct! (b) What is the BB's final velocity vf, in meters per second? vf = | (c) If the BB doesn't exit the box, what will the velocity of the box v'2, be in meters per second? ***Please explain how to derive the equation (the answer to part a).arrow_forwardhawkeye shoots an arrow with a mass 35g. the force on the arrow as it is shot through the 25 cm bow is 140f (N) and 0.25 d(m). what is the velocity of the arrow as it leaves the bowarrow_forwardAn 82-kg male and a 48-kg female pair figure skating team are gliding across the ice at 7.4 m/s, preparing for a throw jump maneuver. The male skater tosses the female skater forward with a speed of 8.6 m/s. Determine the speed of the male skater immediately after the throw.arrow_forward
- A 10-m-long glider with a mass of 680 kg (including the passengers) is gliding horizontally through the air at 20 m/s when a 60 kg skydiver drops out by releasing his grip on the glider. What is the glider's speed just after the skydiver lets go?arrow_forwardA 56 g base ball is travelling at 40 m/s. When it hits with the baseball bat, you exert an average force of 78 N, sending the ball back at 30 m/s. How long was the baseball in contact with the bat? Please answer in m/sarrow_forwardThe carbon isotope 14C is used for carbon dating of archaeological artefacts. 14C decays to 14N by a process known as beta decay, in which the nucleus emits an electron (also known as a beta particle) and a subatomic particle called a neutrino. In one such decay, the electron and the neutrino are emitted in opposite directions to each other. The electron has a speed of 5 x 10 m/s and the neutrino has a momentum of 5 x 1024 kg m/s. n as What is the recoil speed of the resulting 14N nucleus? (Take the mass of the carbon-14 and nitrogen-14 nuclei to be 2.34 x 10 26 kg and the mass of the electron to be 9.11 x 1031 kg. If you were aware of such things and concerned, please ignore relativistic effects.)arrow_forward
- The carbon isotope 14C is used for carbon dating of archaeological artefacts. 14C decays to 14N by a process known as beta decay, in which the nucleus emits an electron (also known as a beta particle) and a subatomic particle called a neutrino. In one such decay, the electron and the neutrino are emitted in opposite directions to each other. The electron has a speed of 4 x 107 m/s and the neutrino has a momentum of 8 × 10-24 kg m/s. What is the recoil speed (in m/s) of the resulting 14N nucleus? (Take the mass of the carbon-14 and nitrogen-14 nuclei to be 2.34 x 10-26 kg and the mass of the electron to be 9.11 x 1031 kg. If you were aware of such things and concerned, please ignore relativistic effects.)arrow_forwardA lumberjack is standing on a log floating on a lake. She starts from rest, then runs along the log to the end, when she jumps from the first log onto a second. After landing safely on the second log, she slows down and ends up standing on the second log. Both logs both have masses of 150 kg each and the mass of the lumberjack is 70 kg. The lumberjack reaches a speed of 7.0 m/s relative to the shore during her jump. What is the speed of the lumberjack after she has stopped on the second log? You may assume the drag of the water on the logs is very small. Please answer in units of m/s.arrow_forwardThe mass of a regulation tennis ball is 57.0 g (although it can vary slightly), and tests have shown that the ball is in contact with the tennis racket for 30 ms. (This number can also vary, depending on the racket and swing.) We assume a 59.0 g ball and a 26.0 ms contact time in this problem. In the 2011 Davis Cup competition, Ivo Karlovic made one of the fastest recorded serves in history, which was clocked at 156 mi//h (70 m/s). Part A: What impulse did Karlovic exert on the tennis ball in his record serve? Take the +x direction to be along the final direction of motion of the ball. Part B: What average force did Karlovic exert on the tennis ball in his record serve? Part C: If his opponent returned this serve with a speed of 55.0 m/s, what impulse did his opponent exert on the ball, assuming purely horizontal motion? Take the +x direction to be in the direction the ball is traveling before it is hit by the opponent. Part D: If his opponent returned this serve with a speed of 55.0…arrow_forward
- Two bumper cars at the county fair are sliding toward one another (see figure below). Initially, bumper car 1 is traveling to the east at 5.70 m/s, and bumper car 2 is traveling 79.1° south of west at 4.25 m/s. They collide and stick together, as the driver of one car reaches out and grabs hold of the other driver. The two bumper cars move off together after the collision, and friction is negligible between the cars and the ground. W-OE Car 2 Car 1 Vii (a) If the masses of bumper cars 1 and 2 are 596 kg and 625 kg respectively, what is the velocity of the bumper cars immediately after the collision? magnitude m/s direction ° east of south (b) What is the kinetic energy lost in the collision?arrow_forwardA 6.0-kg object, initially at rest in free space, “explodes” into three segments of equal mass. Two of these segments are observed to be moving with equal speeds of 20 m/s with an angle of 60° between their directions of motion. How much kinetic energy is released in this explosion?arrow_forwardAn unfortunate astronaut loses his grip during a spacewalk and finds himself floating away from the space station, carrying only a rope and a bag of tools. First he tries to throw a rope to his fellow astronaut, but the rope is too short. In a last ditch effort, the astronaut throws his bag of tools in the direction of his motion, away from the space station. The astronaut has a mass of ma = 102 kg and the bag of tools has a mass of mp = 19.0 kg. If the astronaut is moving away from the space station at Vj = 2.10 m/s initially, what is the minimum final speed vp.f of the bag of tools with respect to the space station that will keep the astronaut from drifting away forever? Ub.f = m/sarrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON