An amusement park ride consists of a large vertical cylinder that spins about its axis fast enough that any person inside is held up against the wall eve when the floor is removed. The coefficient of static friction between the person and the wall is u, = 0.3 and the radius of the drum is R= 2m. (a) Find wmin, the minimum angular speed at which the drum should rotate such that the person is held up even if the floor is removed. (hint: when th floor is removed, the person is held up by the static frictional force). (b) Find the linear speed of the person when the drum is rotating at the minimum angular speed you found in (a) (c) Suppose that the drum started from rest and reached the speed you found in (a) in 120 seconds. During this time the drum had constant angular acceleration. Find the number of rotations made by the person within this time.
Angular Momentum
The momentum of an object is given by multiplying its mass and velocity. Momentum is a property of any object that moves with mass. The only difference between angular momentum and linear momentum is that angular momentum deals with moving or spinning objects. A moving particle's linear momentum can be thought of as a measure of its linear motion. The force is proportional to the rate of change of linear momentum. Angular momentum is always directly proportional to mass. In rotational motion, the concept of angular momentum is often used. Since it is a conserved quantity—the total angular momentum of a closed system remains constant—it is a significant quantity in physics. To understand the concept of angular momentum first we need to understand a rigid body and its movement, a position vector that is used to specify the position of particles in space. A rigid body possesses motion it may be linear or rotational. Rotational motion plays important role in angular momentum.
Moment of a Force
The idea of moments is an important concept in physics. It arises from the fact that distance often plays an important part in the interaction of, or in determining the impact of forces on bodies. Moments are often described by their order [first, second, or higher order] based on the power to which the distance has to be raised to understand the phenomenon. Of particular note are the second-order moment of mass (Moment of Inertia) and moments of force.
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 7 images