Elements Of Electromagnetics
7th Edition
ISBN: 9780190698614
Author: Sadiku, Matthew N. O.
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Question
An ammonia ice plant operates between a condenser temperature of 35°C and evaporator
of -15°C. It produces 10 metric tons of ice per day from water at 30°C to ice at -5°C. Assuming
simple saturation cycle, determine the horsepower of the motor if the adiabatic efficiency of
the compressor nc = 0.85 and mechanical efficiency nm = 0.95. The specific heat of ice is 2.094
kJ/kg-°C and the latent heat is 335 kJ/kg. From the table for ammonia the following enthalpies
are: condenser entrance = 1703 kJ/kg, exit = 366.1 kJ/kg; compressor entrance = 1443.9 kJ/kg, exit = 1703 kJ/kg.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 4 steps with 3 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- An ammonia refrigeration compressor takes its suction from the evaporator at a temperature of -20oF (-28.9oC) and a quality of 95%. The compressor discharges at a pressure of 100 psi (689.5 kPa), liquid ammonia leaves condenser at 50oF (10oC). Properties of Ammonia: At 689.6 kPa (Tsat = 13.3oC) h = 1,568 kJ/kg; s = 5.7676 kJ/kg.K At 10oC: hf = 246.531 kJ/kg At -28.9oC by interpolation hf = 68.5 kJ/kg; hg = 1424.5 kJ/kg sf = 0.49366; sg = 6.0452 Determine the quality of refrigerant upon entering to the evaporator.arrow_forwardA two-evaporatoor compression refrigeration system like that in the Figure below uses refrigerant-134a as the working fluid. The system operates evaporator 1 at 30 psia, evaporator 2 at 10 psia, and the condeser at 180 psia. The cooling load for evaporator 1 is 9000 Btu/h and that for evaporator 2 is 24,000 Btu/h. Determine the power required to operate the compressor and the COP of this system. The regrigerant is saturated liquid at the exit of the condenser and saturated vapor at the exit of each evaporator, and the compressor is isentropic.arrow_forwardI need help on the following question: The vapour compression cycle (picture provided), utilises the refrigerant R134a flowing at 0.05 kg s-1. Assuming that the compression is adiabatic and reversible. If the actual input power to the compressor is 2 kW, then: 1. You need to determine the theoretical input power to the compressor and the heat transfer (Φ) to theevaporator. Take the enthalpies h1, h2, and h3 to be 238.41, 263.68 and 81.5 kJ kg-1 (use the 'NH3 Refrigeration Table' where you can find online). 2. You need to determine the coefficient of performance based on your answer to the previous question (1). 3. You need to determine the compressors mechanical efficiency.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY