Concept explainers
Alarm systems use the
ejecting electrons continuously and causing a small
light beam, the current is interrupted, and the alarm is triggered.
An alarm system uses 100. g of a metal in the photocell. You know that the metal is one of 3 possible
metals whose work functions are known. If you shine a violet laser (405 nm) on the photocell, you detect a
current. If you shine a green laser (532 nm) on the photocell, you do not detect a current.
Metal Work function (J)
Potassium 3.69 x 10-19
Sodium 4.19 x 10-19
Aluminum 6.54 x 10-19
(a) Which metal is being used in the photocell? How do you know?
(b) What is the velocity of the detected electrons?
(c) Do you expect to detect a current if you increase the intensity of the green laser? Why?
(d) Draw an energy level diagram (Energy on the y-axis) which shows the energy level of
i. the electron while in the metal
ii. the metal + removed electron (make this your zero of energy)
iii. the metal + removed electron with a kinetic energy equal to that of part (b)
iv. indicate what transition represents Φo
Trending nowThis is a popular solution!
Step by stepSolved in 5 steps with 3 images
- A light source is used in a photoelectric effect experiment to determine the work function of a particular metal. When green light from a mercury lamp (546.1nm) is used, a retarding potential of 1.79V reduces the photocurrent to zero. Based on this measurement, what is the work function for this metal? (Units: eV) Note: h = 6.626 x 10-34 Js = 4.136 x 10-15 eVsarrow_forwardYour answer is partially correct. A spectral emission line is electromagnetic radiation that is emitted in a wavelength range narrow enough to be taken as a single wavelength. One such emission line that is important in astronomy has a wavelength of 21 cm. What is the photon energy in the electromagnetic wave at that wavelength? Number 9.465714286 Units eVarrow_forwardA monochromatic light source illuminates the surface of metal X. The maximum kinetic energy of electrons leaving the surface of the metal is shown in the graph above.An ammeter is connected to the standard photoelectric effect circuit to measure the photoelectric current arising from the electrons moving between the cathode and anode of the vacuum tube containing the illuminated sample. The current is found to be 12.4mA when the metal is illuminated with a wavelength of 184.2nm.What is the energy (eV) of the photons striking metal X?arrow_forward
- A nickel crystal’s work function is measured to be 5.22 eV at 25°C. As the temperature increases by 300°C, the work function drops by 50 meV. By how much does this shift the threshold wavelength for photoelectric emission?arrow_forward(a) Calculate the wavelength of light in vacuum that has a frequency of 5.06 x 10 18 nm (b) What is its wavelength in flint glass? nm (c) Calculate the energy of one photon of such light in vacuum. Express the answer in electron volts. eV (d) Does the energy of the photon change when it enters the flint glass? The energy of the photon changes. The energy of the photon does not change. Hz. Explain.arrow_forwardLight with a single wavelength of 490 nm impacts a metal surface releasing an electrons. How much energy in Joules is in each photo of this light? ________ What is the energy in eV of a photon whose wavelength is 490 nm?________ Light with a single wavelength of 490 nm impacts a metal surface releasing an electrons. If the released electrons each have an energy of 1.9 eV, what is the work function of the metal in eV? _____ f the light source were brought closer to the surface so that the light reaching the surface was brighter which would change? ______arrow_forward
- Suppose a company wanted to develop an electricity-generating device based on the Earth as a blackbody. This temperature of 35°C at night. What would be the work function of a metal that could produce photoelectrons from the peak wavelength of the Earth's blackbody radiation at this temperature? What would be the kinetic company chose to base its operations in Death Valley, California, whose summers see a surface energy of a photoelectron produced by light half this wavelength?arrow_forwardSuppose a linear accelerator (linac) creates a X-ray beam where every individual photon has an energy of 19 MeV. If 3x1010 photons are produced over 90x10-15 s, as measured through an area of 3.1 m², determine the intensity of the X-ray beam. I = B W/m²arrow_forwardBased on your answer in Question 7, when light with a wavelength of 198 nm strikes the surface of tin metal, electrons are ejected with a maximum kinetic energy of 2.9 x 10-19 J. What is the binding energy of these electrons to the metal?arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON