(a) In a photoelectric effect experiment, a target material is irradiated with a beam of monochromatic light. State one factor that causes the rate of emission of photoelectrons to increase.
Compton effect
The incoming photons' energy must be in the range of an X-ray frequency to generate the Compton effect. The electron does not lose enough energy that reduces the wavelength of scattered photons towards the visible spectrum. As a result, with visible lights, the Compton effect is missing.
Recoil Velocity
The amount of backward thrust or force experienced by a person when he/she shoots a gun in the forward direction is called recoil velocity. This phenomenon always follows the law of conservation of linear momentum.
(a) In a
(b) Explain how the photoelectric effect was
(c) The energy of an ultraviolet light is 3.28 eV.
(i) What is its wavelength? (Given: h=6.63✕10-34 Js ; e=1.602✕10-19 C).
(ii) Based on the de Broglie's hypothesis, determine the velocity of the electron. (Given: h=6.63✕10-34 Js ; me=9.11✕10-31 kg)
d) In a photoelectric experiment using a photocell, the graph of stopping potential Vs against frequency f of incident light as shown in FIGURE 6 is obtained. From the graph, deduce
(i) the threshold frequency.
(ii) the value of maximum kinetic energy when incident light frequency is 5.0✕1014 Hz. (Given: h=6.63✕10-34 Js ; e=1.602✕10-19 C)
(iii) Determine the value of stopping potential Vs. (Given: h=6.63✕10-34 Js ; e=1.602✕10-19 C)
Step by step
Solved in 2 steps