adjacent rectangular corrals (see figure). 85. (a) Write the area A of the corrals as a function of x. (b) Construct a table showing possible values of x and the corresponding areas of the corral. Use the table to estimate the dimensions that will produce the maximum enclosed area. (c) Use a graphing utility to graph the area function. Use the graph to approximate the dimensions that will produce the maximum enclosed area. (d) Write the area function in standard form to find analytically the dimensions that will produce the maximum area. (e) Compare your results from parts (b), (c), and (d). 82. Geometry An indoor physical fitness room consists of a rectangular region with a semicircle on each end. The perimeter of the room is to be a 200-meter single-lane running track. (a) Draw a diagram that gives a visual representation of the problem. Let x and y represent the length and width of the rectangular region, respectively. (b) Determine the radius of each semicircular end of the room. Determine the distance, in terms of y, around the inside edge of each semicircular part of the track. (c) Use the result of part (b) to write an equation, in terms of x and y, for the distance traveled in one lap around the track. Solve for y. (d) Use the result of part (c) to write the area A of the rectangular region as a function of x. What dimensions will produce a rectangle of maximum area? . Maximum Revenue A small theater has a seating capacity of 2000. When the ticket price is $20, attendance is 1500. For each $1 decrease in price, attendance increases by 100. (a) Write the revenue R of the theater as a function of ticket price x. (b) What ticket price will yield a maximum revenue?

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Topic Video
Question

Can you please help

adjacent rectangular corrals (see figure).
85.
(a) Write the area A of the corrals as a function of x.
(b) Construct a table showing possible values of x and
the corresponding areas of the corral. Use the table
to estimate the dimensions that will produce the
maximum enclosed area.
(c) Use a graphing utility to graph the area function.
Use the graph to approximate the dimensions that
will produce the maximum enclosed area.
(d) Write the area function in standard form to find
analytically the dimensions that will produce the
maximum area.
(e) Compare your results from parts (b), (c), and (d).
82. Geometry An indoor physical fitness room consists
of a rectangular region with a semicircle on each end.
The perimeter of the room is to be a 200-meter
single-lane running track.
Transcribed Image Text:adjacent rectangular corrals (see figure). 85. (a) Write the area A of the corrals as a function of x. (b) Construct a table showing possible values of x and the corresponding areas of the corral. Use the table to estimate the dimensions that will produce the maximum enclosed area. (c) Use a graphing utility to graph the area function. Use the graph to approximate the dimensions that will produce the maximum enclosed area. (d) Write the area function in standard form to find analytically the dimensions that will produce the maximum area. (e) Compare your results from parts (b), (c), and (d). 82. Geometry An indoor physical fitness room consists of a rectangular region with a semicircle on each end. The perimeter of the room is to be a 200-meter single-lane running track.
(a) Draw a diagram that gives a visual representation of
the problem. Let x and y represent the length and
width of the rectangular region, respectively.
(b) Determine the radius of each semicircular end of the
room. Determine the distance, in terms of y, around
the inside edge of each semicircular part of the track.
(c) Use the result of part (b) to write an equation, in
terms of x and y, for the distance traveled in one lap
around the track. Solve for y.
(d) Use the result of part (c) to write the area A of
the rectangular region as a function of x. What
dimensions will produce a rectangle of maximum
area?
. Maximum Revenue A small theater has a seating
capacity of 2000. When the ticket price is $20,
attendance is 1500. For each $1 decrease in price,
attendance increases by 100.
(a) Write the revenue R of the theater as a function of
ticket price x.
(b) What ticket price will yield a maximum revenue?
Transcribed Image Text:(a) Draw a diagram that gives a visual representation of the problem. Let x and y represent the length and width of the rectangular region, respectively. (b) Determine the radius of each semicircular end of the room. Determine the distance, in terms of y, around the inside edge of each semicircular part of the track. (c) Use the result of part (b) to write an equation, in terms of x and y, for the distance traveled in one lap around the track. Solve for y. (d) Use the result of part (c) to write the area A of the rectangular region as a function of x. What dimensions will produce a rectangle of maximum area? . Maximum Revenue A small theater has a seating capacity of 2000. When the ticket price is $20, attendance is 1500. For each $1 decrease in price, attendance increases by 100. (a) Write the revenue R of the theater as a function of ticket price x. (b) What ticket price will yield a maximum revenue?
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 6 steps with 6 images

Blurred answer
Knowledge Booster
Research Design Formulation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,