
College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Answer parts a, b and c of the following question.
7. a) You want to store 1,000 J of energy in an ideal spring when it is compressed by only 2.5 cm. What should be the force constant (spring constant) of this spring?
b) A very light ideal spring having a spring constant (force constant) of 8.2 N/cm is used to lift a 2.2-kg tool with an upward acceleration of 3.25 m/s2. If the spring has negligible length when it us not stretched, how long is it while it is pulling the tool upward?
c) How fast must a 6.0-kg cat run to have a kinetic energy of 150 J?
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 4 steps with 4 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A spring that has a spring constant of k = 183.0 N/m is oriented vertically, with one end on the ground. What distance y must the spring compress for an m = 2.43 kg object placed on its upper end to reach equilibrium? y = By how much AUspring does the potential energy stored in the spring increase during the compression? AUspring = Jarrow_forwardThe spring in a retractable ballpoint pen is 1.8 cm long, with a 320 N/m spring constant. When the pen is retracted, the spring is compressed by 1.0 mm. When you click the button to extend the pen, you compress the spring by an additional 5.0 mm. How much energy is required to extend the spring?arrow_forwardA spring has a force constant of 12.0 N/m and a rest length of 0.10 m. 0.375 J of energy are used to stretch the spring. What is the new spring length?arrow_forward
- Suppose a stretched spring is used to supply power to a light bulb. The spring has a spring constant k=34.0 N/m and is stretched from its equilibrium length (which is the length where the spring force is zero) by a length 2.24 m. If the spring returns to its equilibrium length in 55.3 seconds, what is the average power in Watts that could be transferred from the spring to the light bulb?arrow_forwardYour answer is partially correct. The figure shows an 7.8 kg stone at rest on a spring. The spring is compressed 9.9 cm by the stone. (a) What is the spring constant? (b) The stone is pushed down an additional 26 cm and released.What is the elastic potential energy of the compressed spring just before that release? (c) What is the change in the gravitational potential energy of the stone-Earth system when the stone moves from the release point to its maximum height? (d) What is that maximum height, measured from the release point? (a) Number 172 Units N/m (b) Number 49.75 Units J (c) Number 79.75 Units (d) Number 64.7 Units cmarrow_forwardA 0.40 kg block can slide up and down a rough 10-m-high, 30-m-long slope. At the bottom, a stiff spring with spring constant 800 N/m is compressed 0.50 m and used to launch the block up the slope. The friction force on the block from the slope is 1.2 N. Use g = 10 m/s². Match the answers with questions. the change in spring potential energy (AUsp) A. -40 J the change in gravitational potential energy (AUg) the change in thermal energy (AEth) the change in kinetic energy (AK) B. -100 J C. -18 J D. 36 E. -36 J F. 18 J G. 24 J H. 40 J I. 100 J J. -24 Jarrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley

College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON