Elements Of Electromagnetics
7th Edition
ISBN: 9780190698614
Author: Sadiku, Matthew N. O.
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
thumb_up100%
A vessel of water containing 300 kg of water is initially at 270 K. A 100 kg piece of metal,
initially at 1300 K, is placed in the water vessel to cool and the vessel is closed. The specific
heat of the metal is 0.6 kJ/kg K and 4.2 kJ/kg K for water. Assume the specific heats are
constant and that the vessel is well insulated.
a. Find the final equilibrium temperature after cooling. b. Find the amount of entropy generated within the vessel in kJ/K.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps with 1 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Given the pressure - volume diagram in figure below. Assume ideal gas undergo cyclic process. Path AB is adiabatic compression while path CD is adiabatic expansion. Also, paths BC and DA are isochoric processes. Ifthe value of y is 1.5, and the ratio of VilVy = 10 a. Calculate: QoalQsc b. Calculate Was assuming initial volume Vi= 2L and Pi = 1 atm. P Carrow_forward2) Two glass bulbs, one on the left with a volume of 2 liters and the other on the right with avolume of 6 liters, are connected to one another by a thin tube that is initially closed by astopcock. The bulb on the left has 0.1 moles of ideal gas, and the bulb on the right isevacuated. The system is in thermal equilibrium with the surroundings at 300K. When thestopcock is opened, the gas flows out to fill both bulbs. Calculate A for this process. If wewere to insert a propeller to extract work as the gas flows from left to right, what is themaximum amount of work that we could possibly extract?arrow_forwardAssuming air is an ideal gas composed of only O2 and N2 how much heat is necessary to heat the air isobarically from 30 degrees celsius to 500 degrees celsius? We are given the conditions that pressurized air is at 30 degrees Celcius and 5 bar. It is then preheated to 500 degrees celsius and then compressed to 35 bar. The air compressor operated at a 75% efficiency.arrow_forward
- A sample of water that is initially at 84.00C absorbs 500 kcal of heat. As a result, the liquid water becomes water vapor at 1150C. What is the mass of the water? (Some useful information: cwater = 1 cal/g0C, Lv,water = 540 cal/g, and csteam = 0.480 cal/g0 C. a. 488 g b. 788 g c. 588 g d. 888 g e. 688 garrow_forwardQuestion # 4 a) A rigid tank contains water vapor at 250 C and unknown pressure. When the tank is cooled to 124 C, the vapors start condensing. Find the initial pressure in the tank. b) A piston–cylinder device initially contains 50 L of liquid water at 40°C and 200 kPa. Heat is transferred to the water at constant pressure until the entire liquid is vaporized. i.What is the mass of the water? ii.What is the final temperature? iii. Determine the total enthalpy change.arrow_forwardA beaker of water sits in the sun until it reaches an equilibrium temperature of30°C. The beaker is made of 100 g of aluminum and contains 180 g of water. In an attempt to cool this system, a small block of ice at 0°C is added to the water. a. Determine the exact mass of ice needed to melt (giving up its latent heat of fusion) and bring the water and beaker temperature down to 0°C. b. If the ice block has a mass of 100 g, determine the final temperature of the system. If it turns out that Tf = 0°C, determine how much ice remains unmelted.arrow_forward
- A beaker of water sits in the sun until it reaches an equilibrium temperature of30°C.The beaker is made of 100 g of aluminum and contains 180 g of water. In an attempt to cool this system, a small block of ice at 0°C is added to the water. a. Determine the exact mass of ice needed to melt (giving up its latent heat of fusion) and bring the water and beaker temperature down to 0°C. b. If the ice block has a mass of 100 g, determine the final temperature of the system. If it turns out that Tf = 0°C, determine how much ice remains unmelted. c. Repeat your calculations for 50 g of ice.arrow_forwardneed the correct ansarrow_forwardSolve the following problem and show your complete solutions for better understanding.arrow_forward
- A rigid vessel of 0.5 m3 volume containing saturated steam at 109°C, how much heat must be removed to bring its temperature to 25°C. *arrow_forwardSketch the process on the following state diagrams. For the purposes of your diagram(s), it may beuseful consider that increasing the magnetic field B at a fixed temperature would tend to increase the magnetization M, resulting in a more ordered material (i.e., lower entropy).arrow_forward2. Two insulated cylinders A and B with volumes VA = 2.0 m³ and VB = 5.8 m³ contain chlorine gas at different pressures and temperatures. The cylinders are insulated (no heat is lost to or gained from the outside) and connected by a valve. Initially, the valve is) closed and the gas in the two cylinders has the following values: PA = 4.0x105 N/m², TA = 210 K, PB = 2.5x105 N/m², TB = 580 K. The valve is opened to allow the contents in the two cylinders to mix until the pressure equalizes. valve B a. Assuming there is no change in the temperatures of the containers themselves, determine the final temperature of the gas in the two cylinders. The atomic mass of chlorine gas is 35.4527 u. (1 u = 1.67377x1027 kg) b. Determine the final pressure?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY