A vertical spring with constant k = 5 N/m and damping constant β = 6 kg/s has one end fixed to a wall, and a mass of 98 kg at the other end. Being in the position of equilibrium, the mass is propelled downward with a speed of 4 m/s. Suppose that on the system an external force acts in newtons given by f(t) = 8e^ −t What diferential equitation could determine the speed of the object at any time “t”, with t in seconds
A vertical spring with constant k = 5 N/m and damping constant β = 6 kg/s has one end fixed to a wall, and a mass of 98 kg at the other end. Being in the position of equilibrium, the mass is propelled downward with a speed of 4 m/s. Suppose that on the system an external force acts in newtons given by f(t) = 8e^ −t What diferential equitation could determine the speed of the object at any time “t”, with t in seconds
Related questions
Question
100%
A vertical spring with constant k = 5 N/m and damping constant β = 6
kg/s has one end fixed to a wall, and a mass of 98 kg at the other end. Being in the position of equilibrium, the mass is propelled downward with a speed of 4 m/s. Suppose that on the system
an external force acts in newtons given by f(t) = 8e^
−t
What diferential equitation could determine the speed of the object at any time “t”, with t in seconds
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images