College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
A battery has a specified potential difference ΔV between its terminals and establishes that potential difference between conductors attached to the terminals. A 12-V battery is connected between two parallel plates as shown. The separation between the plates is d = 0.30 cm, and we assume the electric field between the plates to be uniform. (This assumption is reasonable if the plate separation is small relative to the plate dimensions and we do not consider locations near the plate edges.) Find the magnitude of the electric field between the plates.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 4 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Asap plzzzarrow_forwardAn electron is fired at a speed yo = 4.5 x 106 m/s and at an angle D + + + + + + + + Path of the electron 0 00 d X + AV = -45° halfway between two parallel conducting plates that are D = 4.0 mm apart, as in the figure below. The voltage difference between the plates is AV = 135 V. (a) Determine how close, d, the electron will get to the bottom plate. mm (b) Determine the horizontal position where the electron will strike the top plate. (Report the distance from the origin along the x-axis.) mmarrow_forwardTwo large parallel plates are separated by a 0.015-m gap. The plates are connected to the terminals of a 12-V battery, which remains connected. a) What is the strength of the electric field in the region between the plates? b) What happens to the strength of the electric field if the gap between the plates is reduced to 0.010 m? Justify your answer. c) Does charge flow through the battery as the separation between the plates is being reduced? Explain your answer.arrow_forward
- A capacitor is composed of two metal plates. The two plates have the dimensions L = 0.11 m and W = 0.56 m. The plates have a distance between them of d = 0.1 m, and are parallel to each other. Part (a) The plates are connected to a battery and charged such that the first plate has a charge of q. Write an expression for the magnitude of the electric field, |E|, halfway between the plates. Part (b) Input an expression for the magnitude of the electric field, |E2|, just in front of plate two. Part (c) If plate two has a total charge of q = -1 mC, what is its charge density, σ, in C/m2?arrow_forwardA 31 m length of coaxial cable has a solid cylindrical wire inner conductor with a di- ameter of 2.168 mm and carries a charge of 10.02 µC. The surrounding conductor is a cylindrical shell and has an inner diameter of 11.534 mm and a charge of-10.02 C. What is the capacitance of this cable? As- sume the region between the conductors is air. The value of the Coulomb comstant is 8.98755 x 10° N m²/C. Answer in units of nF.arrow_forwardA slab of copper of thickness b = 1.68 mm is thrust into a parallel-plate capacitor of plate area A = 1.96 cm2 and plate separation d = 5.35 mm, as shown in the figure; the slab is exactly halfway between the plates. (a) What is the capacitance after the slab is introduced? (b) If a charge q = 2.68 µC is maintained on the plates, what is the ratio of the stored energy before to that after the slab is inserted? (c) How much work is done on the slab as it is inserted? (d) Is the slab sucked in or must it be pushed in? Copper (a) Number 4.73e-13 Units (b) Number i 0.686 (c) Number i 5.36e-10 Units J (d) sucked inarrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON