College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
A uniform electric field exists in a region between two oppositely charged plates. An electron is released from rest at the surface of the negatively charged plate and strikes the surface of the opposite plate, 6.0 cm away, in a time 1.6 ✕ 10−8 s.
(a) What is the speed of the electron as it strikes the second plate?
__________m/s
(b) What is the magnitude of the electric field?
___________N/C
__________m/s
(b) What is the magnitude of the electric field?
___________N/C
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps with 3 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A constant electric field of 20.0 N/C points along the positive x-direction. An electron, initially at rest, moves a distance of 0.500 m in this space. How fast is the electron moving after its 0.500 m journey?arrow_forwardAn electron is initially at rest at distance 0.15 m from a fixed charge Q = -5.00×10-9 C. The electron accelerates. How fast is it moving when the distance is 0.3 m?arrow_forwardA positively charged particle of mass 1.92 x 10-27 kg initially moves left to right long the x axis at a speed of 4.02 x 103 m/s. It moves into an electric field, which points in the negative x direction, and travels a distance of 0.41 m before coming to rest. What acceleration magnitude does the particle experience? (Ignore gravity) Round your answer to 2 decimal places.arrow_forward
- On a typical clear day, the atmospheric electric field points downward and has a magnitude of approximately 110 N/C. Compare the gravitational and electric forces on a small dust particle of mass 3,1 x 10 g that carries a single electron charge. 1.1134 What is the acceleration (both magnitude and direction) of the dust particle? (Enter the magnitude in m/s.) magnitude m/s direction downward varrow_forwardOne type of ink-jet printer, called an electrostatic ink-jet printer, forms the letters by using deflecting electrodes to steer charged ink drops up and down vertically as the ink jet sweeps horizontally across the page. The ink jet forms 35.0 μm-diameter drops of ink, charges them by spraying 800,000 electrons on the surface, and shoots them toward the page with a horizontal velocity of 17.0 m/s. Along the way, the drops pass through the long axis of two horizontal, parallel electrodes that are 6.0 mm long, 4.0 mm wide, and spaced 1.0 mm apart. The distance from the center of the electrodes to the paper is 1.90 cm. To form the letters, which have a maximum height of 6.0 mm, the drops need to be deflected up or down a maximum of 3.0 mm. Ink, which consists of dye particles suspended in alcohol, has a density of 800 kg/m³. 3 E D 80 C $ 4 R 888 F4 F V % 5 FS T ^ G 6 B Part A What electric field strength is needed between the electrodes to achieve this deflection? Express your answer with…arrow_forwardHelp me answer this question please. An electron is projected horizontally at a speed of 2.5 x 10*6 m/s between two plates. metal parallel I = 7.5 cm in length as shown in the figure below. The greatness of electric field is 130 N/C. Determined : a) Acceleration of the electron b) The time it takes to escape from the metal plates c) The final vector velocity of the electron as it escapes from the platesarrow_forward
- An electron is immersed in a uniform electric field ?⃗ = ???̂. What is the direction of the acceleration of the electron if it has an initial velocity ?⃗ ? = ???̂?arrow_forwardA proton is projected in the positive x direction into a region of uniform electric field E = (-6.20 × 105) ↑ N/C at t = 0. The proton travels 7.90 cm as it comes to rest. (a) Determine the acceleration of the proton. m/s² magnitude direction -X (b) Determine the initial speed of the proton. m/s magnitude direction +X ✓ ✓ (c) Determine the time interval over which the proton comes to rest.arrow_forwardPlease Help ASAP!!!!arrow_forward
- Answer A and B on the image below.arrow_forwardA proton is projected in the positive x direction into a region of uniform electric field E = (-6.10 x 105) î N/C at t = 0. The proton travels 6.90 cm as it comes to rest. (a) Determine the acceleration of the proton. magnitude m/s2 direction -x (b) Determine the initial speed of the proton. magnitude m/s direction +x (c) Determine the time interval over which the proton comes to rest.arrow_forwardThe drawing shows an electron entering the lower left side of a parallel plate capacitor and exiting at the upper right side. The initial speed of the electron is 3.13 × 106 m/s. The capacitor is 2.00 cm long, and its plates are separated by 0.150 cm. Assume that the electric field between the plates is uniform everywhere and find its magnitude. 15.30 + A + 2.00 cm Number i + + + 0.150 cm Unitsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON