College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
A uniform board is leaning against a smooth vertical wall. The board is at an angle θ above the horizontal ground. The coefficient of static friction between the ground and the lower end of the board is 0.650. Find the smallest value for the angle θ, such that the lower end of the board does not slide along the ground.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 5 steps with 5 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- One end of a uniform meter stick is placed against a vertical wall. The other end is held by a lightweight cord that makes an angle 0 with the stick. The coefficient of static friction between the end of the meter stick and the wall is H, = 0.400. A. (2 points) What is the maximum value that 0 can have if the stick is to remain in equilibrium? Express your answer in degrees. B. (4 points) A block of the same weight as the meter stick is suspended from the stick at a distance x from the wall, as shown below. Assume that 0 =15.0° in this part of the problem. What is the minimum value of x for which the stick will remain in equilibrium? Answer: x > C. (4 points) When 0 =15.0°, how large must the coefficient of static friction be so that the block can be attached 0.100 [m] from the left end of the stick without causing it to slip? Answer: Hs 2arrow_forwardA uniform ladder 5.0 m long rests against a frictionless, vertical wall with its lower end 3.0 m from the wall. The ladder weighs 160 N. The coefficient of static friction between the foot of the ladder and the ground is 0.40. A man weighing 740 N climbs slowly up the ladder. (a) What is the maximum friction force, in Newtons, that the ground can exert on the ladder at its lower end? (b) What is the actual friction force, in Newtons, when the man has climbed 1.0 m along the ladder? (c) How far, in meters, along the ladder can the man climb before the ladder starts to slip?arrow_forwardOne end of a uniform € = 3.40-m-long rod of weight w is supported by a cable at an angle of 8 = 37° with the rod. The other end rests against a wall, where it is held by friction (see figure). The coefficient of static friction between the wall and the rod is μ = 0.590. Determine the minimum distance x from point A at which an additional weight w (the same as the weight of the rod) can be hung without causing the rod to slip at point A. Barrow_forward
- In the figure, a uniform plank, with a length L and a weight of W, rests on the ground and against a frictionless roller at the top of a wall of height h. The plank remains in equilibrium for any value of 000 or more, but slips if = 000. Find the coefficient of static friction between the plank and the ground. NOTE: Give your answer in terms of the variables given. flg = L 0 Roller harrow_forwardA ladder is leaning against a vertical wall, and both ends of the ladder are at the point of slipping. The coefficient of friction between the ladder and the horizontal surface is ?1=0.165 and the coefficient of friction between the ladder and the wall is ?2=0.153 . Determine the maximum angle α with the vertical that the ladder can make without falling on the ground.arrow_forwardA painter wishes to know whether or not he can safely stand on a ladder. The ladder has a mass M1 = 10 kg which is uniformly distributed throughout its length L = 7.1 m. The ladder is propped up at an angle theta = 49o. The coefficient of static friction between the ground and the ladder is mus = 0.49, and the wall against which the ladder is resting is frictionless. Calculate the maximum mass of the painter for which the ladder will remain stable when he climbs a distance d = 5.5 m up the ladder. If the painter does not stand on the ladder, what is the minimum angle theta for which the ladder will remain stable?arrow_forward
- A ladder of mass M and length L 4 m is on a level floor leaning againsta vertical wall. The coefficient static friction between the ladder and floor is mus = .6. while the friction between the ladder and the wall is negligible. The ladder is at an angle of 50 degrees above the horizontal. A man of mass 3M starts to climb the ladder. To what distance up the ladder can the man climb before the ladder starts to slip on the floor? Question 11.59 x = 0.8 O.3 0.6 0.5 O.2arrow_forwardIn a city park a nonuniform wooden beam 4.00 m long is suspended horizontally by a light steel cable at each end. The cable at the left-hand end makes an angle of 30.0° with the vertical and has tension 620 N. The cable at the right-hand end of the beam makes an angle of 50.0° with the vertical. As an employee of the Parks and Recreation Department, you are asked to find the weight of the beam and the location of its center of gravity.arrow_forwardA fence post of mass m = 8 kg supports a fence with three lengths of barbed wire. The bottom wire is a distance d = 0.35 m from the ground and each wire is a distance 0.35 m above the previous one. Each of these three wires has the tension on it. For this problem, assume that the force exerted by these wires is purely horizontal. An additional guy wire is used to keep the pole upright with a tension of Fa = 490 N. The guy wire attaches to the post at a point h = 0.86 m above the ground and makes an angle of θ = 45 with respect to the horizontal. Write an expression for the tension in any one of the three fence wires. What is the normal force that the ground exerts upward on the post?arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON