a) u' + 6u = -6 c) u' - 6u = 6 d) u' + 6u = 6 Q5) The general solution of 2x2y" + 3xy' - 15y = 0, is: a) y(x) = ₂x² + ₂x³ c) Y(x) = ₂₁x² + ₂x-3 b) y(x) = ₂x + ₂x-3 d) y(x) = c₂x + ₂x³ '05 cos3t); 2s² +18

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
SOLVE Q5
Q1) One of the following is correct for functions the f(x) = 1, g(x)= x³ and h(x)
M
a) f(x), g(x) and h(x) are linearly dependent
c) W (f(x), g(x), h(x)) = 0
b) f(x), g(x) and h(x) are linearly independent
d) W(f(x), g(x), h(x)) = 9
Q2) L-1
-2s
2+3
H
a) -2coshnt
b)-2sinhnt
c)-2cosnt
d)-2sinnt
Q3) The Integrating factor which make (3x2y + 2xy + y³)dx + (x² + y²)dy = 0 exact, is:
a) e-3x
b) ei*
d) e³x
Q4) The linear form of nonlinear ODE y' - 2y = 2y, is:
a) u' + 6u = -6
b) u' - 6u = -6
c) u'-6u = 6
d) u' + 6u = 6
Q5) The general solution of 2x2y" + 3xy'-15y = 0, is:
a) y(x) = ₂x² + ₂x³
b) y(x) = ₂x + ₂x-3
c) y(x) = c₁x² + ₂x-3
d) y(x) = c₁x + ₂x³
Q6) Evaluate L (2 e-2 sin4t -0.5 cos3t):
8
S
a)
(s+2)² +16
b)
c) (8+2)² +16 23²418
(5-2)2+16
25² +18
2s² +18
(s-2)² +16
Q7) The general solution of y"-4y' +9y = 0, is:
a) y(t)=ce²t cos(5 t) + c₂e²tsin (5 t)
c)y(t) = cet cos(√5 t) + c₂e²t sin (√5 t)
Q8) The inverse Laplace transform of H(s):
b)y(t) = ce cos(√5 t) + c₂e¹sin (√5t)
d) y(t) = ce cos(5 t) + cesin (5 t)
1
=
is:
.
(35+2)(5-2)
a) f(t) ==e+e²t
b) f(t) ==e.
8
c) f(t) ==e+e-2t
d)f(t) ==e.
+²e²t
Q9) The solution of y" + y'= 0 by using power series method, is:
a) y(x) = ao + a₁ (1-
11
b) y(x) = a + a₁(1+
21
31
41
St
21
c) y(x) = a₁ + a₁(x-+
d)y(x) = a + a₂(x + ==
51
-
e-2t
1
2s² +18
+ +
ii
41
41
51
++
+ ...)
Transcribed Image Text:Q1) One of the following is correct for functions the f(x) = 1, g(x)= x³ and h(x) M a) f(x), g(x) and h(x) are linearly dependent c) W (f(x), g(x), h(x)) = 0 b) f(x), g(x) and h(x) are linearly independent d) W(f(x), g(x), h(x)) = 9 Q2) L-1 -2s 2+3 H a) -2coshnt b)-2sinhnt c)-2cosnt d)-2sinnt Q3) The Integrating factor which make (3x2y + 2xy + y³)dx + (x² + y²)dy = 0 exact, is: a) e-3x b) ei* d) e³x Q4) The linear form of nonlinear ODE y' - 2y = 2y, is: a) u' + 6u = -6 b) u' - 6u = -6 c) u'-6u = 6 d) u' + 6u = 6 Q5) The general solution of 2x2y" + 3xy'-15y = 0, is: a) y(x) = ₂x² + ₂x³ b) y(x) = ₂x + ₂x-3 c) y(x) = c₁x² + ₂x-3 d) y(x) = c₁x + ₂x³ Q6) Evaluate L (2 e-2 sin4t -0.5 cos3t): 8 S a) (s+2)² +16 b) c) (8+2)² +16 23²418 (5-2)2+16 25² +18 2s² +18 (s-2)² +16 Q7) The general solution of y"-4y' +9y = 0, is: a) y(t)=ce²t cos(5 t) + c₂e²tsin (5 t) c)y(t) = cet cos(√5 t) + c₂e²t sin (√5 t) Q8) The inverse Laplace transform of H(s): b)y(t) = ce cos(√5 t) + c₂e¹sin (√5t) d) y(t) = ce cos(5 t) + cesin (5 t) 1 = is: . (35+2)(5-2) a) f(t) ==e+e²t b) f(t) ==e. 8 c) f(t) ==e+e-2t d)f(t) ==e. +²e²t Q9) The solution of y" + y'= 0 by using power series method, is: a) y(x) = ao + a₁ (1- 11 b) y(x) = a + a₁(1+ 21 31 41 St 21 c) y(x) = a₁ + a₁(x-+ d)y(x) = a + a₂(x + == 51 - e-2t 1 2s² +18 + + ii 41 41 51 ++ + ...)
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,